1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
type cls = Kw | Kl | Ks | Kd
type op_base =
| Oadd
| Osub
| Omul
type op = cls * op_base
let commutative = function
| (_, (Oadd | Omul)) -> true
| (_, _) -> false
let associative = function
| (_, (Oadd | Omul)) -> true
| (_, _) -> false
type atomic_pattern =
| Tmp
| AnyCon
| Con of int64
type pattern =
| Bnr of op * pattern * pattern
| Atm of atomic_pattern
| Var of string * atomic_pattern
let rec pattern_match p w =
match p with
| Var _ ->
failwith "variable not allowed"
| Atm (Tmp) ->
begin match w with
| Atm (Con _ | AnyCon) -> false
| _ -> true
end
| Atm (Con _) -> w = p
| Atm (AnyCon) ->
not (pattern_match (Atm Tmp) w)
| Bnr (o, pl, pr) ->
begin match w with
| Bnr (o', wl, wr) ->
o' = o &&
pattern_match pl wl &&
pattern_match pr wr
| _ -> false
end
type 'a cursor = (* a position inside a pattern *)
| Bnrl of op * 'a cursor * pattern
| Bnrr of op * pattern * 'a cursor
| Top of 'a
let rec fold_cursor c p =
match c with
| Bnrl (o, c', p') -> fold_cursor c' (Bnr (o, p, p'))
| Bnrr (o, p', c') -> fold_cursor c' (Bnr (o, p', p))
| Top _ -> p
let peel p x =
let once out (p, c) =
match p with
| Var _ -> failwith "variable not allowed"
| Atm _ -> (p, c) :: out
| Bnr (o, pl, pr) ->
(pl, Bnrl (o, c, pr)) ::
(pr, Bnrr (o, pl, c)) :: out
in
let rec go l =
let l' = List.fold_left once [] l in
if List.length l' = List.length l
then l
else go l'
in go [(p, Top x)]
let fold_pairs l1 l2 ini f =
let rec go acc = function
| [] -> acc
| a :: l1' ->
go (List.fold_left
(fun acc b -> f (a, b) acc)
acc l2) l1'
in go ini l1
let iter_pairs l f =
fold_pairs l l () (fun x () -> f x)
type 'a state =
{ id: int
; seen: pattern
; point: ('a cursor) list }
let rec binops side {point; _} =
List.fold_left (fun res c ->
match c, side with
| Bnrl (o, c, r), `L -> ((o, c), r) :: res
| Bnrr (o, l, c), `R -> ((o, c), l) :: res
| _ -> res)
[] point
let group_by_fst l =
List.fast_sort (fun (a, _) (b, _) ->
compare a b) l |>
List.fold_left (fun (oo, l, res) (o', c) ->
match oo with
| None -> (Some o', [c], [])
| Some o when o = o' -> (oo, c :: l, res)
| Some o -> (Some o', [c], (o, l) :: res))
(None, [], []) |>
(function
| (None, _, _) -> []
| (Some o, l, res) -> (o, l) :: res)
let sort_uniq cmp l =
List.fast_sort cmp l |>
List.fold_left (fun (eo, l) e' ->
match eo with
| None -> (Some e', l)
| Some e ->
if cmp e e' = 0
then (eo, l)
else (Some e', e :: l)
) (None, []) |>
(function
| (None, _) -> []
| (Some e, l) -> List.rev (e :: l))
let normalize (point: ('a cursor) list) =
sort_uniq compare point
let nextbnr tmp s1 s2 =
let pm w (_, p) = pattern_match p w in
let o1 = binops `L s1 |>
List.filter (pm s2.seen) |>
List.map fst
and o2 = binops `R s2 |>
List.filter (pm s1.seen) |>
List.map fst
in
List.map (fun (o, l) ->
o,
{ id = 0
; seen = Bnr (o, s1.seen, s2.seen)
; point = normalize (l @ tmp)
}) (group_by_fst (o1 @ o2))
type p = string
module StateSet : sig
type set
val create: unit -> set
val add: set -> p state ->
[> `Added | `Found ] * p state
val iter: set -> (p state -> unit) -> unit
val elems: set -> (p state) list
end = struct
include Hashtbl.Make(struct
type t = p state
let equal s1 s2 = s1.point = s2.point
let hash s = Hashtbl.hash s.point
end)
type set =
{ h: int t
; mutable next_id: int }
let create () =
{ h = create 500; next_id = 1 }
let add set s =
(* delete the check later *)
assert (s.point = normalize s.point);
try
let id = find set.h s in
`Found, {s with id}
with Not_found -> begin
let id = set.next_id in
set.next_id <- id + 1;
add set.h s id;
`Added, {s with id}
end
let iter set f =
let f s id = f {s with id} in
iter f set.h
let elems set =
let res = ref [] in
iter set (fun s -> res := s :: !res);
!res
end
type table_key =
| K of op * p state * p state
module StateMap = Map.Make(struct
type t = table_key
let compare ka kb =
match ka, kb with
| K (o, sl, sr), K (o', sl', sr') ->
compare (o, sl.id, sr.id)
(o', sl'.id, sr'.id)
end)
type rule =
{ name: string
; pattern: pattern
(* TODO access pattern *)
}
let generate_table rl =
let states = StateSet.create () in
(* initialize states *)
let ground =
List.fold_left
(fun ini r ->
peel r.pattern r.name @ ini)
[] rl |>
group_by_fst
in
let find x d l =
try List.assoc x l with Not_found -> d in
let tmp = find (Atm Tmp) [] ground in
let con = find (Atm AnyCon) [] ground in
let () =
List.iter (fun (seen, l) ->
let point =
if pattern_match (Atm Tmp) seen
then normalize (tmp @ l)
else normalize (con @ l)
in
let s = {id = 0; seen; point} in
let flag, _ = StateSet.add states s in
assert (flag = `Added)
) ground
in
(* setup loop state *)
let map = ref StateMap.empty in
let map_add k s' =
map := StateMap.add k s' !map
in
let flag = ref `Added in
let flagmerge = function
| `Added -> flag := `Added
| _ -> ()
in
(* iterate until fixpoint *)
while !flag = `Added do
flag := `Stop;
let statel = StateSet.elems states in
iter_pairs statel (fun (sl, sr) ->
nextbnr tmp sl sr |>
List.iter (fun (o, s') ->
let flag', s' =
StateSet.add states s' in
flagmerge flag';
map_add (K (o, sl, sr)) s';
));
done;
(StateSet.elems states, !map)
let intersperse x l =
let rec go left right out =
let out =
(List.rev left @ [x] @ right) ::
out in
match right with
| x :: right' ->
go (x :: left) right' out
| [] -> out
in go [] l []
let rec permute = function
| [] -> [[]]
| x :: l ->
List.concat (List.map
(intersperse x) (permute l))
(* build all binary trees with ordered
* leaves l *)
let rec bins build l =
let rec go l r out =
match r with
| [] -> out
| x :: r' ->
go (l @ [x]) r'
(fold_pairs
(bins build l)
(bins build r)
out (fun (l, r) out ->
build l r :: out))
in
match l with
| [] -> []
| [x] -> [x]
| x :: l -> go [x] l []
let products l ini f =
let rec go acc la = function
| [] -> f (List.rev la) acc
| xs :: l ->
List.fold_left (fun acc x ->
go acc (x :: la) l)
acc xs
in go ini [] l
(* combinatorial nuke... *)
let rec ac_equiv =
let rec alevel o = function
| Bnr (o', l, r) when o' = o ->
alevel o l @ alevel o r
| x -> [x]
in function
| Bnr (o, _, _) as p
when associative o ->
products
(List.map ac_equiv (alevel o p)) []
(fun choice out ->
List.map
(bins (fun l r -> Bnr (o, l, r)))
(if commutative o
then permute choice
else [choice]) |>
List.concat |>
(fun l -> List.rev_append l out))
| Bnr (o, l, r)
when commutative o ->
fold_pairs
(ac_equiv l) (ac_equiv r) []
(fun (l, r) out ->
Bnr (o, l, r) ::
Bnr (o, r, l) :: out)
| Bnr (o, l, r) ->
fold_pairs
(ac_equiv l) (ac_equiv r) []
(fun (l, r) out ->
Bnr (o, l, r) :: out)
| x -> [x]
|