diff options
Diffstat (limited to 'src/fdmdv.c')
| -rw-r--r-- | src/fdmdv.c | 2082 |
1 files changed, 2082 insertions, 0 deletions
diff --git a/src/fdmdv.c b/src/fdmdv.c new file mode 100644 index 0000000..7aeb4b8 --- /dev/null +++ b/src/fdmdv.c @@ -0,0 +1,2082 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: fdmdv.c + AUTHOR......: David Rowe + DATE CREATED: April 14 2012 + + Functions that implement the FDMDV modem. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2012 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +/*---------------------------------------------------------------------------*\ + + INCLUDES + +\*---------------------------------------------------------------------------*/ + +#include <assert.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <math.h> + +#include "fdmdv_internal.h" +#include "codec2_fdmdv.h" +#include "comp_prim.h" +#include "rn.h" +#include "rxdec_coeff.h" +#include "test_bits.h" +#include "pilot_coeff.h" +#include "codec2_fft.h" +#include "hanning.h" +#include "os.h" +#include "machdep.h" + +#include "debug_alloc.h" + +static int sync_uw[] = {1,-1,1,-1,1,-1}; + +static const COMP pi_on_4 = { .70710678118654752439, .70710678118654752439 }; // cosf(PI/4) , sinf(PI/4) + + +/*--------------------------------------------------------------------------* \ + + FUNCTION....: fdmdv_create + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Create and initialise an instance of the modem. Returns a pointer + to the modem states or NULL on failure. One set of states is + sufficient for a full duplex modem. + +\*---------------------------------------------------------------------------*/ + +struct FDMDV * fdmdv_create(int Nc) +{ + struct FDMDV *f; + int c, i, k; + + assert(NC == FDMDV_NC_MAX); /* check public and private #defines match */ + assert(Nc <= NC); + assert(FDMDV_NOM_SAMPLES_PER_FRAME == M_FAC); + assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M_FAC+M_FAC/P)); + + f = (struct FDMDV*)MALLOC(sizeof(struct FDMDV)); + if (f == NULL) + return NULL; + + f->Nc = Nc; + + f->ntest_bits = Nc*NB*4; + f->current_test_bit = 0; + f->rx_test_bits_mem = (int*)MALLOC(sizeof(int)*f->ntest_bits); + assert(f->rx_test_bits_mem != NULL); + for(i=0; i<f->ntest_bits; i++) + f->rx_test_bits_mem[i] = 0; + assert((sizeof(test_bits)/sizeof(int)) >= f->ntest_bits); + + f->old_qpsk_mapping = 0; + + f->tx_pilot_bit = 0; + + for(c=0; c<Nc+1; c++) { + f->prev_tx_symbols[c].real = 1.0; + f->prev_tx_symbols[c].imag = 0.0; + f->prev_rx_symbols[c].real = 1.0; + f->prev_rx_symbols[c].imag = 0.0; + + for(k=0; k<NSYM; k++) { + f->tx_filter_memory[c][k].real = 0.0; + f->tx_filter_memory[c][k].imag = 0.0; + } + + /* Spread initial FDM carrier phase out as far as possible. + This helped PAPR for a few dB. We don't need to adjust rx + phase as DQPSK takes care of that. */ + + f->phase_tx[c].real = cosf(2.0*PI*c/(Nc+1)); + f->phase_tx[c].imag = sinf(2.0*PI*c/(Nc+1)); + + f->phase_rx[c].real = 1.0; + f->phase_rx[c].imag = 0.0; + + for(k=0; k<NT*P; k++) { + f->rx_filter_mem_timing[c][k].real = 0.0; + f->rx_filter_mem_timing[c][k].imag = 0.0; + } + } + f->prev_tx_symbols[Nc].real = 2.0; + + fdmdv_set_fsep(f, FSEP); + f->freq[Nc].real = cosf(2.0*PI*0.0/FS); + f->freq[Nc].imag = sinf(2.0*PI*0.0/FS); + f->freq_pol[Nc] = 2.0*PI*0.0/FS; + + f->fbb_rect.real = cosf(2.0*PI*FDMDV_FCENTRE/FS); + f->fbb_rect.imag = sinf(2.0*PI*FDMDV_FCENTRE/FS); + f->fbb_pol = 2.0*PI*FDMDV_FCENTRE/FS; + f->fbb_phase_tx.real = 1.0; + f->fbb_phase_tx.imag = 0.0; + f->fbb_phase_rx.real = 1.0; + f->fbb_phase_rx.imag = 0.0; + + /* Generate DBPSK pilot Look Up Table (LUT) */ + + generate_pilot_lut(f->pilot_lut, &f->freq[Nc]); + + /* freq Offset estimation states */ + + f->fft_pilot_cfg = codec2_fft_alloc (MPILOTFFT, 0, NULL, NULL); + assert(f->fft_pilot_cfg != NULL); + + for(i=0; i<NPILOTBASEBAND; i++) { + f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0; + f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0; + } + f->pilot_lut_index = 0; + f->prev_pilot_lut_index = 3*M_FAC; + + for(i=0; i<NRXDECMEM; i++) { + f->rxdec_lpf_mem[i].real = 0.0; + f->rxdec_lpf_mem[i].imag = 0.0; + } + + for(i=0; i<NPILOTLPF; i++) { + f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0; + f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0; + } + + f->foff = 0.0; + f->foff_phase_rect.real = 1.0; + f->foff_phase_rect.imag = 0.0; + + for(i=0; i<NRX_FDM_MEM; i++) { + f->rx_fdm_mem[i].real = 0.0; + f->rx_fdm_mem[i].imag = 0.0; + } + + f->fest_state = 0; + f->sync = 0; + f->timer = 0; + for(i=0; i<NSYNC_MEM; i++) + f->sync_mem[i] = 0; + + for(c=0; c<Nc+1; c++) { + f->sig_est[c] = 0.0; + f->noise_est[c] = 0.0; + } + + f->sig_pwr_av = 0.0; + f->foff_filt = 0.0; + + return f; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_destroy + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Destroy an instance of the modem. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_destroy(struct FDMDV *fdmdv) +{ + assert(fdmdv != NULL); + codec2_fft_free(fdmdv->fft_pilot_cfg); + FREE(fdmdv->rx_test_bits_mem); + FREE(fdmdv); +} + + +void fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv) { + fdmdv->old_qpsk_mapping = 1; +} + + +int fdmdv_bits_per_frame(struct FDMDV *fdmdv) +{ + return (fdmdv->Nc * NB); +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_get_test_bits() + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Generate a frame of bits from a repeating sequence of random data. OK so + it's not very random if it repeats but it makes syncing at the demod easier + for test purposes. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[]) +{ + int i; + int bits_per_frame = fdmdv_bits_per_frame(f); + + for(i=0; i<bits_per_frame; i++) { + tx_bits[i] = test_bits[f->current_test_bit]; + f->current_test_bit++; + if (f->current_test_bit > (f->ntest_bits-1)) + f->current_test_bit = 0; + } +} + +float fdmdv_get_fsep(struct FDMDV *f) +{ + return f->fsep; +} + +void fdmdv_set_fsep(struct FDMDV *f, float fsep) { + int c; + float carrier_freq; + + f->fsep = fsep; + + /* Set up frequency of each carrier */ + + for(c=0; c<f->Nc/2; c++) { + carrier_freq = (-f->Nc/2 + c)*f->fsep; + f->freq[c].real = cosf(2.0*PI*carrier_freq/FS); + f->freq[c].imag = sinf(2.0*PI*carrier_freq/FS); + f->freq_pol[c] = 2.0*PI*carrier_freq/FS; + } + + for(c=f->Nc/2; c<f->Nc; c++) { + carrier_freq = (-f->Nc/2 + c + 1)*f->fsep; + f->freq[c].real = cosf(2.0*PI*carrier_freq/FS); + f->freq[c].imag = sinf(2.0*PI*carrier_freq/FS); + f->freq_pol[c] = 2.0*PI*carrier_freq/FS; + } +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: bits_to_dqpsk_symbols() + AUTHOR......: David Rowe + DATE CREATED: 16/4/2012 + + Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from + vector of (1,Nc*Nb) input tx_bits. The Nc+1 symbol is the +1 -1 +1 + .... BPSK sync carrier. + +\*---------------------------------------------------------------------------*/ + +void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping) +{ + int c, msb, lsb; + COMP j = {0.0,1.0}; + + /* Map tx_bits to to Nc DQPSK symbols. Note legacy support for + old (suboptimal) V0.91 FreeDV mapping */ + + for(c=0; c<Nc; c++) { + msb = tx_bits[2*c]; + lsb = tx_bits[2*c+1]; + if ((msb == 0) && (lsb == 0)) + tx_symbols[c] = prev_tx_symbols[c]; + if ((msb == 0) && (lsb == 1)) + tx_symbols[c] = cmult(j, prev_tx_symbols[c]); + if ((msb == 1) && (lsb == 0)) { + if (old_qpsk_mapping) + tx_symbols[c] = cneg(prev_tx_symbols[c]); + else + tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]); + } + if ((msb == 1) && (lsb == 1)) { + if (old_qpsk_mapping) + tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]); + else + tx_symbols[c] = cneg(prev_tx_symbols[c]); + } + } + + /* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly) + two spectral lines at +/- Rs/2 */ + + if (*pilot_bit) + tx_symbols[Nc] = cneg(prev_tx_symbols[Nc]); + else + tx_symbols[Nc] = prev_tx_symbols[Nc]; + + if (*pilot_bit) + *pilot_bit = 0; + else + *pilot_bit = 1; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: tx_filter() + AUTHOR......: David Rowe + DATE CREATED: 17/4/2012 + + Given Nc*NB bits construct M_FAC samples (1 symbol) of Nc+1 filtered + symbols streams. + +\*---------------------------------------------------------------------------*/ + +void tx_filter(COMP tx_baseband[NC+1][M_FAC], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM]) +{ + int c; + int i,j,k; + float acc; + COMP gain; + + gain.real = sqrtf(2.0)/2.0; + gain.imag = 0.0; + + for(c=0; c<Nc+1; c++) + tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain); + + /* + tx filter each symbol, generate M_FAC filtered output samples for each symbol. + Efficient polyphase filter techniques used as tx_filter_memory is sparse + */ + + for(i=0; i<M_FAC; i++) { + for(c=0; c<Nc+1; c++) { + + /* filter real sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC) + acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k]; + tx_baseband[c][i].real = acc; + + /* filter imag sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC) + acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k]; + tx_baseband[c][i].imag = acc; + + } + } + + /* shift memory, inserting zeros at end */ + + for(i=0; i<NSYM-1; i++) + for(c=0; c<Nc+1; c++) + tx_filter_memory[c][i] = tx_filter_memory[c][i+1]; + + for(c=0; c<Nc+1; c++) { + tx_filter_memory[c][NSYM-1].real = 0.0; + tx_filter_memory[c][NSYM-1].imag = 0.0; + } +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: tx_filter_and_upconvert() + AUTHOR......: David Rowe + DATE CREATED: 13 August 2014 + + Given Nc symbols construct M_FAC samples (1 symbol) of Nc+1 filtered + and upconverted symbols. + +\*---------------------------------------------------------------------------*/ + +void tx_filter_and_upconvert(COMP tx_fdm[], int Nc, COMP tx_symbols[], + COMP tx_filter_memory[NC+1][NSYM], + COMP phase_tx[], COMP freq[], + COMP *fbb_phase, COMP fbb_rect) +{ + int c; + int i,j,k; + float acc; + COMP gain; + COMP tx_baseband; + COMP two = {2.0, 0.0}; + float mag; + + gain.real = sqrtf(2.0)/2.0; + gain.imag = 0.0; + + for(i=0; i<M_FAC; i++) { + tx_fdm[i].real = 0.0; + tx_fdm[i].imag = 0.0; + } + + for(c=0; c<Nc+1; c++) + tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain); + + /* + tx filter each symbol, generate M_FAC filtered output samples for + each symbol, which we then freq shift and sum with other + carriers. Efficient polyphase filter techniques used as + tx_filter_memory is sparse + */ + + for(c=0; c<Nc+1; c++) { + for(i=0; i<M_FAC; i++) { + + /* filter real sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC) + acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k]; + tx_baseband.real = acc; + + /* filter imag sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC) + acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k]; + tx_baseband.imag = acc; + + /* freq shift and sum */ + + phase_tx[c] = cmult(phase_tx[c], freq[c]); + tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c])); + } + } + + /* shift whole thing up to carrier freq */ + + for (i=0; i<M_FAC; i++) { + *fbb_phase = cmult(*fbb_phase, fbb_rect); + tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase); + } + + /* + Scale such that total Carrier power C of real(tx_fdm) = Nc. This + excludes the power of the pilot tone. + We return the complex (single sided) signal to make frequency + shifting for the purpose of testing easier + */ + + for (i=0; i<M_FAC; i++) + tx_fdm[i] = cmult(two, tx_fdm[i]); + + /* normalise digital oscillators as the magnitude can drift over time */ + + for (c=0; c<Nc+1; c++) { + mag = cabsolute(phase_tx[c]); + phase_tx[c].real /= mag; + phase_tx[c].imag /= mag; + } + + mag = cabsolute(*fbb_phase); + fbb_phase->real /= mag; + fbb_phase->imag /= mag; + + /* shift memory, inserting zeros at end */ + + for(i=0; i<NSYM-1; i++) + for(c=0; c<Nc+1; c++) + tx_filter_memory[c][i] = tx_filter_memory[c][i+1]; + + for(c=0; c<Nc+1; c++) { + tx_filter_memory[c][NSYM-1].real = 0.0; + tx_filter_memory[c][NSYM-1].imag = 0.0; + } +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdm_upconvert() + AUTHOR......: David Rowe + DATE CREATED: 17/4/2012 + + Construct FDM signal by frequency shifting each filtered symbol + stream. Returns complex signal so we can apply frequency offsets + easily. + +\*---------------------------------------------------------------------------*/ + +void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M_FAC], COMP phase_tx[], COMP freq[], + COMP *fbb_phase, COMP fbb_rect) +{ + int i,c; + COMP two = {2.0, 0.0}; + float mag; + + for(i=0; i<M_FAC; i++) { + tx_fdm[i].real = 0.0; + tx_fdm[i].imag = 0.0; + } + + for (c=0; c<=Nc; c++) + for (i=0; i<M_FAC; i++) { + phase_tx[c] = cmult(phase_tx[c], freq[c]); + tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c])); + } + + /* shift whole thing up to carrier freq */ + + for (i=0; i<M_FAC; i++) { + *fbb_phase = cmult(*fbb_phase, fbb_rect); + tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase); + } + + /* + Scale such that total Carrier power C of real(tx_fdm) = Nc. This + excludes the power of the pilot tone. + We return the complex (single sided) signal to make frequency + shifting for the purpose of testing easier + */ + + for (i=0; i<M_FAC; i++) + tx_fdm[i] = cmult(two, tx_fdm[i]); + + /* normalise digital oscilators as the magnitude can drift over time */ + + for (c=0; c<Nc+1; c++) { + mag = cabsolute(phase_tx[c]); + phase_tx[c].real /= mag; + phase_tx[c].imag /= mag; + } + + mag = cabsolute(*fbb_phase); + fbb_phase->real /= mag; + fbb_phase->imag /= mag; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_mod() + AUTHOR......: David Rowe + DATE CREATED: 26/4/2012 + + FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and + generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols. + Sync bit is returned to aid alignment of your next frame. + + The sync_bit value returned will be used for the _next_ frame. + + The output signal is complex to support single sided frequency + shifting, for example when testing frequency offsets in channel + simulation. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[], int tx_bits[], int *sync_bit) +{ + COMP tx_symbols[NC+1]; + PROFILE_VAR(mod_start, tx_filter_and_upconvert_start); + + PROFILE_SAMPLE(mod_start); + bits_to_dqpsk_symbols(tx_symbols, fdmdv->Nc, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, fdmdv->old_qpsk_mapping); + memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(fdmdv->Nc+1)); + PROFILE_SAMPLE_AND_LOG(tx_filter_and_upconvert_start, mod_start, " bits_to_dqpsk_symbols"); + tx_filter_and_upconvert(tx_fdm, fdmdv->Nc, tx_symbols, fdmdv->tx_filter_memory, + fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect); + PROFILE_SAMPLE_AND_LOG2(tx_filter_and_upconvert_start, " tx_filter_and_upconvert"); + + *sync_bit = fdmdv->tx_pilot_bit; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: generate_pilot_fdm() + AUTHOR......: David Rowe + DATE CREATED: 19/4/2012 + + Generate M_FAC samples of DBPSK pilot signal for Freq offset estimation. + +\*---------------------------------------------------------------------------*/ + +void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol, + float *filter_mem, COMP *phase, COMP *freq) +{ + int i,j,k; + float tx_baseband[M_FAC]; + + /* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly) + two spectral lines at +/- RS/2 */ + + if (*bit) + *symbol = -*symbol; + + if (*bit) + *bit = 0; + else + *bit = 1; + + /* filter DPSK symbol to create M_FAC baseband samples */ + + filter_mem[NFILTER-1] = (sqrtf(2)/2) * *symbol; + for(i=0; i<M_FAC; i++) { + tx_baseband[i] = 0.0; + for(j=M_FAC-1,k=M_FAC-i-1; j<NFILTER; j+=M_FAC,k+=M_FAC) + tx_baseband[i] += M_FAC * filter_mem[j] * gt_alpha5_root[k]; + } + + /* shift memory, inserting zeros at end */ + + for(i=0; i<NFILTER-M_FAC; i++) + filter_mem[i] = filter_mem[i+M_FAC]; + + for(i=NFILTER-M_FAC; i<NFILTER; i++) + filter_mem[i] = 0.0; + + /* upconvert */ + + for(i=0; i<M_FAC; i++) { + *phase = cmult(*phase, *freq); + pilot_fdm[i].real = sqrtf(2)*2*tx_baseband[i] * phase->real; + pilot_fdm[i].imag = sqrtf(2)*2*tx_baseband[i] * phase->imag; + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: generate_pilot_lut() + AUTHOR......: David Rowe + DATE CREATED: 19/4/2012 + + Generate a 4M sample vector of DBPSK pilot signal. As the pilot signal + is periodic in 4M samples we can then use this vector as a look up table + for pilot signal generation in the demod. + +\*---------------------------------------------------------------------------*/ + +void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq) +{ + int pilot_rx_bit = 0; + float pilot_symbol = sqrtf(2.0); + COMP pilot_phase = {1.0, 0.0}; + float pilot_filter_mem[NFILTER]; + COMP pilot[M_FAC]; + int i,f; + + for(i=0; i<NFILTER; i++) + pilot_filter_mem[i] = 0.0; + + /* discard first 4 symbols as filter memory is filling, just keep + last four symbols */ + + for(f=0; f<8; f++) { + generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq); + if (f >= 4) + memcpy(&pilot_lut[M_FAC*(f-4)], pilot, M_FAC*sizeof(COMP)); + } + + // create complex conjugate since we need this and only this later on + for (f=0;f<4*M_FAC;f++) + { + pilot_lut[f] = cconj(pilot_lut[f]); + } + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: lpf_peak_pick() + AUTHOR......: David Rowe + DATE CREATED: 20/4/2012 + + LPF and peak pick part of freq est, put in a function as we call it twice. + +\*---------------------------------------------------------------------------*/ + +void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[], + COMP pilot_lpf[], codec2_fft_cfg fft_pilot_cfg, COMP S[], int nin, + int do_fft) +{ + int i,j,k; + int mpilot; + float mag, imax; + int ix; + float r; + + /* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */ + + for(i=0; i<NPILOTLPF-nin; i++) + pilot_lpf[i] = pilot_lpf[nin+i]; + for(i=NPILOTLPF-nin, j=NPILOTBASEBAND-nin; i<NPILOTLPF; i++,j++) { + pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0; + + // STM32F4 hand optimized, this alone makes it go done from 1.6 to 1.17ms + // switching pilot_coeff to RAM (by removing const in pilot_coeff.h) would save + // another 0.11 ms at the expense of NPILOTCOEFF * 4 bytes == 120 bytes RAM + + if (NPILOTCOEFF%5 == 0) + { + for(k=0; k<NPILOTCOEFF; k+=5) + { + COMP i0 = fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]); + COMP i1 = fcmult(pilot_coeff[k+1], pilot_baseband[j-NPILOTCOEFF+1+k+1]); + COMP i2 = fcmult(pilot_coeff[k+2], pilot_baseband[j-NPILOTCOEFF+1+k+2]); + COMP i3 = fcmult(pilot_coeff[k+3], pilot_baseband[j-NPILOTCOEFF+1+k+3]); + COMP i4 = fcmult(pilot_coeff[k+4], pilot_baseband[j-NPILOTCOEFF+1+k+4]); + + pilot_lpf[i] = cadd(cadd(cadd(cadd(cadd(pilot_lpf[i], i0),i1),i2),i3),i4); + } + } + else + { + for(k=0; k<NPILOTCOEFF; k++) + { + pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k])); + } + + } + } + + /* We only need to do FFTs if we are out of sync. Making them optional saves CPU in sync, which is when + we need to run the codec */ + + imax = 0.0; + *foff = 0.0; + for(i=0; i<MPILOTFFT; i++) { + S[i].real = 0.0; + S[i].imag = 0.0; + } + + if (do_fft) { + + /* decimate to improve DFT resolution, window and DFT */ + mpilot = FS/(2*200); /* calc decimation rate given new sample rate is twice LPF freq */ + for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) { + S[j] = fcmult(hanning[i], pilot_lpf[i]); + } + + codec2_fft_inplace(fft_pilot_cfg, S); + + /* peak pick and convert to Hz */ + + imax = 0.0; + ix = 0; + for(i=0; i<MPILOTFFT; i++) { + mag = S[i].real*S[i].real + S[i].imag*S[i].imag; + if (mag > imax) { + imax = mag; + ix = i; + } + } + r = 2.0*200.0/MPILOTFFT; /* maps FFT bin to frequency in Hz */ + + if (ix >= MPILOTFFT/2) + *foff = (ix - MPILOTFFT)*r; + else + *foff = (ix)*r; + } + + *max = imax; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rx_est_freq_offset() + AUTHOR......: David Rowe + DATE CREATED: 19/4/2012 + + Estimate frequency offset of FDM signal using BPSK pilot. Note that + this algorithm is quite sensitive to pilot tone level wrt other + carriers, so test variations to the pilot amplitude carefully. + +\*---------------------------------------------------------------------------*/ + +float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin, int do_fft) +{ + int i; +#ifndef FDV_ARM_MATH + int j; +#endif + COMP pilot[M_FAC+M_FAC/P]; + COMP prev_pilot[M_FAC+M_FAC/P]; + float foff, foff1, foff2; + float max1, max2; + + assert(nin <= M_FAC+M_FAC/P); + + /* get pilot samples used for correlation/down conversion of rx signal */ + + for (i=0; i<nin; i++) { + pilot[i] = f->pilot_lut[f->pilot_lut_index]; + f->pilot_lut_index++; + if (f->pilot_lut_index >= 4*M_FAC) + f->pilot_lut_index = 0; + + prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index]; + f->prev_pilot_lut_index++; + if (f->prev_pilot_lut_index >= 4*M_FAC) + f->prev_pilot_lut_index = 0; + } + + /* + Down convert latest M_FAC samples of pilot by multiplying by ideal + BPSK pilot signal we have generated locally. The peak of the + resulting signal is sensitive to the time shift between the + received and local version of the pilot, so we do it twice at + different time shifts and choose the maximum. + */ + + for(i=0; i<NPILOTBASEBAND-nin; i++) { + f->pilot_baseband1[i] = f->pilot_baseband1[i+nin]; + f->pilot_baseband2[i] = f->pilot_baseband2[i+nin]; + } + +#ifndef FDV_ARM_MATH + for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) { + f->pilot_baseband1[j] = cmult(rx_fdm[i], pilot[i]); + f->pilot_baseband2[j] = cmult(rx_fdm[i], prev_pilot[i]); + } +#else + // TODO: Maybe a handwritten mult taking advantage of rx_fdm[0] being + // used twice would be faster but this is for sure faster than + // the implementation above in any case. + arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&pilot[0].real,&f->pilot_baseband1[NPILOTBASEBAND-nin].real,nin); + arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&prev_pilot[0].real,&f->pilot_baseband2[NPILOTBASEBAND-nin].real,nin); +#endif + + lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin, do_fft); + lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin, do_fft); + + if (max1 > max2) + foff = foff1; + else + foff = foff2; + + return foff; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_freq_shift() + AUTHOR......: David Rowe + DATE CREATED: 26/4/2012 + + Frequency shift modem signal. The use of complex input and output allows + single sided frequency shifting (no images). + +\*---------------------------------------------------------------------------*/ + +void fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff, + COMP *foff_phase_rect, int nin) +{ + COMP foff_rect; + float mag; + int i; + + foff_rect.real = cosf(2.0*PI*foff/FS); + foff_rect.imag = sinf(2.0*PI*foff/FS); + for(i=0; i<nin; i++) { + *foff_phase_rect = cmult(*foff_phase_rect, foff_rect); + rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect); + } + + /* normalise digital oscillator as the magnitude can drift over time */ + + mag = cabsolute(*foff_phase_rect); + foff_phase_rect->real /= mag; + foff_phase_rect->imag /= mag; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdm_downconvert + AUTHOR......: David Rowe + DATE CREATED: 22/4/2012 + + Frequency shift each modem carrier down to Nc+1 baseband signals. + +\*---------------------------------------------------------------------------*/ + +void fdm_downconvert(COMP rx_baseband[NC+1][M_FAC+M_FAC/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin) +{ + int i,c; + float mag; + + /* maximum number of input samples to demod */ + + assert(nin <= (M_FAC+M_FAC/P)); + + /* downconvert */ + + for (c=0; c<Nc+1; c++) + for (i=0; i<nin; i++) { + phase_rx[c] = cmult(phase_rx[c], freq[c]); + rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c])); + } + + /* normalise digital oscilators as the magnitude can drift over time */ + + for (c=0; c<Nc+1; c++) { + mag = cabsolute(phase_rx[c]); + phase_rx[c].real /= mag; + phase_rx[c].imag /= mag; + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rx_filter() + AUTHOR......: David Rowe + DATE CREATED: 22/4/2012 + + Receive filter each baseband signal at oversample rate P. Filtering at + rate P lowers CPU compared to rate M_FAC. + + Depending on the number of input samples to the demod nin, we + produce P-1, P (usually), or P+1 filtered samples at rate P. nin is + occasionally adjusted to compensate for timing slips due to + different tx and rx sample clocks. + +\*---------------------------------------------------------------------------*/ + +void rx_filter(COMP rx_filt[][P+1], int Nc, COMP rx_baseband[][M_FAC+M_FAC/P], COMP rx_filter_memory[][NFILTER], int nin) +{ + int c, i,j,k,l; + int n=M_FAC/P; + + /* rx filter each symbol, generate P filtered output samples for + each symbol. Note we keep filter memory at rate M_FAC, it's just + the filter output at rate P */ + + for(i=0, j=0; i<nin; i+=n,j++) { + + /* latest input sample */ + + for(c=0; c<Nc+1; c++) + for(k=NFILTER-n,l=i; k<NFILTER; k++,l++) + rx_filter_memory[c][k] = rx_baseband[c][l]; + + /* convolution (filtering) */ + + for(c=0; c<Nc+1; c++) { + rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0; + for(k=0; k<NFILTER; k++) + rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k])); + } + + /* make room for next input sample */ + + for(c=0; c<Nc+1; c++) + for(k=0,l=n; k<NFILTER-n; k++,l++) + rx_filter_memory[c][k] = rx_filter_memory[c][l]; + } + + assert(j <= (P+1)); /* check for any over runs */ +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rxdec_filter() + AUTHOR......: David Rowe + DATE CREATED: 31 July 2014 + + +/- 1000Hz low pass filter, allows us to filter at rate Q to save CPU load. + +\*---------------------------------------------------------------------------*/ + +void rxdec_filter(COMP rx_fdm_filter[], COMP rx_fdm[], COMP rxdec_lpf_mem[], int nin) { + int i,j,k,st; + + for(i=0; i<NRXDECMEM-nin; i++) + rxdec_lpf_mem[i] = rxdec_lpf_mem[i+nin]; + for(i=0, j=NRXDECMEM-nin; i<nin; i++,j++) + rxdec_lpf_mem[j] = rx_fdm[i]; + + st = NRXDECMEM - nin - NRXDEC + 1; + for(i=0; i<nin; i++) { + rx_fdm_filter[i].real = 0.0; + for(k=0; k<NRXDEC; k++) + rx_fdm_filter[i].real += rxdec_lpf_mem[st+i+k].real * rxdec_coeff[k]; + rx_fdm_filter[i].imag = 0.0; + for(k=0; k<NRXDEC; k++) + rx_fdm_filter[i].imag += rxdec_lpf_mem[st+i+k].imag * rxdec_coeff[k]; + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fir_filter2() + AUTHOR......: Danilo Beuche + DATE CREATED: August 2016 + + This version submitted by Danilo for the STM32F4 platform. The idea + is to avoid reading the same value from the STM32F4 "slow" flash + twice. 2-4ms of savings per frame were measured by Danilo and the mcHF + team. + +\*---------------------------------------------------------------------------*/ + +static void fir_filter2(float acc[], float mem[], const float coeff[], const unsigned int dec_rate) { + acc[0] = 0.0; + acc[1] = 0.0; + + float c1,c2,c3,c4,c5,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,a1,a2; + float* inpCmplx = &mem[0]; + const float* coeffPtr = &coeff[0]; + + int m; + + // this manual loop unrolling gives significant boost on STM32 machines + // reduction from avg 3.2ms to 2.4ms in tfdmv.c test + // 5 was the sweet spot, with 6 it took longer again + // and should not harm other, more powerful machines + // no significant difference in output, only rounding (which was to be expected) + // TODO: try to move coeffs to RAM and check if it makes a significant difference + if (NFILTER%(dec_rate*5) == 0) { + for(m=0; m<NFILTER; m+=dec_rate*5) { + c1 = *coeffPtr; + + m1 = inpCmplx[0]; + m2 = inpCmplx[1]; + + inpCmplx+= dec_rate*2; + coeffPtr+= dec_rate; + + c2 = *coeffPtr; + m3 = inpCmplx[0]; + m4 = inpCmplx[1]; + + inpCmplx+= dec_rate*2; + coeffPtr+= dec_rate; + + c3 = *coeffPtr; + m5 = inpCmplx[0]; + m6 = inpCmplx[1]; + + inpCmplx+= dec_rate*2; + coeffPtr+= dec_rate; + + c4 = *coeffPtr; + m7 = inpCmplx[0]; + m8 = inpCmplx[1]; + + inpCmplx+= dec_rate*2; + coeffPtr+= dec_rate; + + c5 = *coeffPtr; + m9 = inpCmplx[0]; + m10 = inpCmplx[1]; + + inpCmplx+= dec_rate*2; + coeffPtr+= dec_rate; + + a1 = c1 * m1 + c2 * m3 + c3 * m5 + c4 * m7 + c5 * m9; + a2 = c1 * m2 + c2 * m4 + c3 * m6 + c4 * m8 + c5 * m10; + acc[0] += a1; + acc[1] += a2; + } + } + else + { + for(m=0; m<NFILTER; m+=dec_rate) { + c1 = *coeffPtr; + + m1 = inpCmplx[0]; + m2 = inpCmplx[1]; + + inpCmplx+= dec_rate*2; + coeffPtr+= dec_rate; + + a1 = c1 * m1; + a2 = c1 * m2; + acc[0] += a1; + acc[1] += a2; + } + } + acc[0] *= dec_rate; + acc[1] *= dec_rate; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: down_convert_and_rx_filter() + AUTHOR......: David Rowe + DATE CREATED: 30/6/2014 + + Combined down convert and rx filter, more memory efficient but less + intuitive design. + + Depending on the number of input samples to the demod nin, we + produce P-1, P (usually), or P+1 filtered samples at rate P. nin is + occasionally adjusted to compensate for timing slips due to + different tx and rx sample clocks. + +\*---------------------------------------------------------------------------*/ + +/* + TODO: [ ] windback phase calculated once at init time +*/ + +void down_convert_and_rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_fdm[], + COMP rx_fdm_mem[], COMP phase_rx[], COMP freq[], + float freq_pol[], int nin, int dec_rate) +{ + int i,k,c,st,Nval; + float windback_phase, mag; + COMP windback_phase_rect; + COMP rx_baseband[NRX_FDM_MEM]; + COMP f_rect; + + //PROFILE_VAR(windback_start, downconvert_start, filter_start); + + /* update memory of rx_fdm */ + +#if 0 + for(i=0; i<NRX_FDM_MEM-nin; i++) + rx_fdm_mem[i] = rx_fdm_mem[i+nin]; + for(i=NFILTER+M_FAC-nin, k=0; i<NFILTER+M_FAC; i++, k++) + rx_fdm_mem[i] = rx_fdm[k]; +#else + // this gives only 40uS gain on STM32 but now that we have, we keep it + memmove(&rx_fdm_mem[0],&rx_fdm_mem[nin],(NRX_FDM_MEM-nin)*sizeof(COMP)); + memcpy(&rx_fdm_mem[NRX_FDM_MEM-nin],&rx_fdm[0],nin*sizeof(COMP)); +#endif + for(c=0; c<Nc+1; c++) { + + /* + + So we have rx_fdm_mem, a baseband array of samples at + rate Fs Hz, including the last nin samples at the end. To + filter each symbol we require the baseband samples for all Nsym + symbols that we filter over. So we need to downconvert the + entire rx_fdm_mem array. To downconvert these we need the LO + phase referenced to the start of the rx_fdm_mem array. + + + <--------------- Nrx_filt_mem -------> + nin + |--------------------------|---------| + 1 | + phase_rx(c) + + This means winding phase(c) back from this point + to ensure phase continuity. + + */ + + //PROFILE_SAMPLE(windback_start); + windback_phase = -freq_pol[c]*NFILTER; + windback_phase_rect.real = cosf(windback_phase); + windback_phase_rect.imag = sinf(windback_phase); + phase_rx[c] = cmult(phase_rx[c],windback_phase_rect); + //PROFILE_SAMPLE_AND_LOG(downconvert_start, windback_start, " windback"); + + /* down convert all samples in buffer */ + + st = NRX_FDM_MEM-1; /* end of buffer */ + st -= nin-1; /* first new sample */ + st -= NFILTER; /* first sample used in filtering */ + + /* freq shift per dec_rate step is dec_rate times original shift */ + + f_rect = freq[c]; + for(i=0; i<dec_rate-1; i++) + f_rect = cmult(f_rect,freq[c]); + + for(i=st; i<NRX_FDM_MEM; i+=dec_rate) { + phase_rx[c] = cmult(phase_rx[c], f_rect); + rx_baseband[i] = cmult(rx_fdm_mem[i],cconj(phase_rx[c])); + } + //PROFILE_SAMPLE_AND_LOG(filter_start, downconvert_start, " downconvert"); + + /* now we can filter this carrier's P symbols */ + + Nval=M_FAC/P; + for(i=0, k=0; i<nin; i+=Nval, k++) { +#ifdef ORIG + rx_filt[c][k].real = 0.0; rx_filt[c][k].imag = 0.0; + + for(m=0; m<NFILTER; m++) + rx_filt[c][k] = cadd(rx_filt[c][k], fcmult(gt_alpha5_root[m], rx_baseband[st+i+m])); +#else + // rx_filt[c][k].real = fir_filter(&rx_baseband[st+i].real, (float*)gt_alpha5_root, dec_rate); + // rx_filt[c][k].imag = fir_filter(&rx_baseband[st+i].imag, (float*)gt_alpha5_root, dec_rate); + fir_filter2(&rx_filt[c][k].real,&rx_baseband[st+i].real, gt_alpha5_root, dec_rate); +#endif + } + //PROFILE_SAMPLE_AND_LOG2(filter_start, " filter"); + + /* normalise digital oscilators as the magnitude can drift over time */ + + mag = cabsolute(phase_rx[c]); + phase_rx[c].real /= mag; + phase_rx[c].imag /= mag; + + //printf("phase_rx[%d] = %f %f\n", c, phase_rx[c].real, phase_rx[c].imag); + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rx_est_timing() + AUTHOR......: David Rowe + DATE CREATED: 23/4/2012 + + Estimate optimum timing offset, re-filter receive symbols at optimum + timing estimate. + +\*---------------------------------------------------------------------------*/ + +float rx_est_timing(COMP rx_symbols[], + int Nc, + COMP rx_filt[][P+1], + COMP rx_filter_mem_timing[][NT*P], + float env[], + int nin, + int m) +{ + int c,i,j; + int adjust; + COMP x, phase, freq; + float rx_timing, fract, norm_rx_timing; + int low_sample, high_sample; + + /* + nin adjust + -------------------------------- + 120 -1 (one less rate P sample) + 160 0 (nominal) + 200 1 (one more rate P sample) + */ + + adjust = P - nin*P/m; + + /* update buffer of NT rate P filtered symbols */ + + for(c=0; c<Nc+1; c++) + for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++) + rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j]; + for(c=0; c<Nc+1; c++) + for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++) + rx_filter_mem_timing[c][i] = rx_filt[c][j]; + + /* sum envelopes of all carriers */ + + for(i=0; i<NT*P; i++) { + env[i] = 0.0; + for(c=0; c<Nc+1; c++) + env[i] += cabsolute(rx_filter_mem_timing[c][i]); + } + + /* The envelope has a frequency component at the symbol rate. The + phase of this frequency component indicates the timing. So work + out single DFT at frequency 2*pi/P */ + + x.real = 0.0; x.imag = 0.0; + freq.real = cosf(2*PI/P); + freq.imag = sinf(2*PI/P); + phase.real = 1.0; + phase.imag = 0.0; + + for(i=0; i<NT*P; i++) { + x = cadd(x, fcmult(env[i], phase)); + phase = cmult(phase, freq); + } + + /* Map phase to estimated optimum timing instant at rate P. The + P/4 part was adjusted by experiment, I know not why.... */ + + norm_rx_timing = atan2f(x.imag, x.real)/(2*PI); + assert(fabsf(norm_rx_timing) < 1.0); + rx_timing = norm_rx_timing*P + P/4; + + if (rx_timing > P) + rx_timing -= P; + if (rx_timing < -P) + rx_timing += P; + + /* rx_filter_mem_timing contains Nt*P samples (Nt symbols at rate + P), where Nt is odd. Lets use linear interpolation to resample + in the centre of the timing estimation window .*/ + + rx_timing += floorf(NT/2.0)*P; + low_sample = floorf(rx_timing); + fract = rx_timing - low_sample; + high_sample = ceilf(rx_timing); + + //printf("rx_timing: %f low_sample: %d high_sample: %d fract: %f\n", rx_timing, low_sample, high_sample, fract); + + for(c=0; c<Nc+1; c++) { + rx_symbols[c] = cadd(fcmult(1.0-fract, rx_filter_mem_timing[c][low_sample-1]), fcmult(fract, rx_filter_mem_timing[c][high_sample-1])); + //rx_symbols[c] = rx_filter_mem_timing[c][high_sample]; + } + + /* This value will be +/- half a symbol so will wrap around at +/- + M/2 or +/- 80 samples with M=160 */ + + return norm_rx_timing*m; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: qpsk_to_bits() + AUTHOR......: David Rowe + DATE CREATED: 24/4/2012 + + Convert DQPSK symbols back to an array of bits, extracts sync bit + from DBPSK pilot, and also uses pilot to estimate fine frequency + error. + +\*---------------------------------------------------------------------------*/ + +float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[], + COMP rx_symbols[], int old_qpsk_mapping) +{ + int c; + COMP d; + int msb=0, lsb=0; + float ferr, norm; + + + /* Extra 45 degree clockwise lets us use real and imag axis as + decision boundaries. "norm" makes sure the phase subtraction + from the previous symbol doesn't affect the amplitude, which + leads to sensible scatter plots */ + + for(c=0; c<Nc; c++) { + norm = 1.0/(cabsolute(prev_rx_symbols[c])+1E-6); + phase_difference[c] = cmult(cmult(rx_symbols[c], fcmult(norm,cconj(prev_rx_symbols[c]))), pi_on_4); + } + + /* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */ + + for (c=0; c<Nc; c++) { + d = phase_difference[c]; + if ((d.real >= 0) && (d.imag >= 0)) { + msb = 0; lsb = 0; + } + if ((d.real < 0) && (d.imag >= 0)) { + msb = 0; lsb = 1; + } + if ((d.real < 0) && (d.imag < 0)) { + if (old_qpsk_mapping) { + msb = 1; lsb = 0; + } else { + msb = 1; lsb = 1; + } + } + if ((d.real >= 0) && (d.imag < 0)) { + if (old_qpsk_mapping) { + msb = 1; lsb = 1; + } else { + msb = 1; lsb = 0; + } + } + rx_bits[2*c] = msb; + rx_bits[2*c+1] = lsb; + } + + /* Extract DBPSK encoded Sync bit and fine freq offset estimate */ + + norm = 1.0/(cabsolute(prev_rx_symbols[Nc])+1E-6); + phase_difference[Nc] = cmult(rx_symbols[Nc], fcmult(norm, cconj(prev_rx_symbols[Nc]))); + if (phase_difference[Nc].real < 0) { + *sync_bit = 1; + ferr = phase_difference[Nc].imag*norm; /* make f_err magnitude insensitive */ + } + else { + *sync_bit = 0; + ferr = -phase_difference[Nc].imag*norm; + } + + /* pilot carrier gets an extra pi/4 rotation to make it consistent + with other carriers, as we need it for snr_update and scatter + diagram */ + + phase_difference[Nc] = cmult(phase_difference[Nc], pi_on_4); + + return ferr; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: snr_update() + AUTHOR......: David Rowe + DATE CREATED: 17 May 2012 + + Given phase differences update estimates of signal and noise levels. + +\*---------------------------------------------------------------------------*/ + +void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[]) +{ + float s[NC+1]; + COMP refl_symbols[NC+1]; + float n[NC+1]; + int c; + + + /* mag of each symbol is distance from origin, this gives us a + vector of mags, one for each carrier. */ + + for(c=0; c<Nc+1; c++) + s[c] = cabsolute(phase_difference[c]); + + /* signal mag estimate for each carrier is a smoothed version of + instantaneous magntitude, this gives us a vector of smoothed + mag estimates, one for each carrier. */ + + for(c=0; c<Nc+1; c++) + sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c]; + + /* noise mag estimate is distance of current symbol from average + location of that symbol. We reflect all symbols into the first + quadrant for convenience. */ + + for(c=0; c<Nc+1; c++) { + refl_symbols[c].real = fabsf(phase_difference[c].real); + refl_symbols[c].imag = fabsf(phase_difference[c].imag); + n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c]))); + } + + /* noise mag estimate for each carrier is a smoothed version of + instantaneous noise mag, this gives us a vector of smoothed + noise power estimates, one for each carrier. */ + + for(c=0; c<Nc+1; c++) + noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c]; +} + +// returns number of shorts in error_pattern[], one short per error + +int fdmdv_error_pattern_size(struct FDMDV *f) { + return f->ntest_bits; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_put_test_bits() + AUTHOR......: David Rowe + DATE CREATED: 24/4/2012 + + Accepts nbits from rx and attempts to sync with test_bits sequence. + If sync OK measures bit errors. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[], + int *bit_errors, int *ntest_bits, int rx_bits[]) +{ + int i,j; + float ber; + int bits_per_frame = fdmdv_bits_per_frame(f); + + /* Append to our memory */ + + for(i=0,j=bits_per_frame; i<f->ntest_bits-bits_per_frame; i++,j++) + f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j]; + for(i=f->ntest_bits-bits_per_frame,j=0; i<f->ntest_bits; i++,j++) + f->rx_test_bits_mem[i] = rx_bits[j]; + + /* see how many bit errors we get when checked against test sequence */ + + *bit_errors = 0; + for(i=0; i<f->ntest_bits; i++) { + error_pattern[i] = test_bits[i] ^ f->rx_test_bits_mem[i]; + *bit_errors += error_pattern[i]; + //printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]); + } + + /* if less than a thresh we are aligned and in sync with test sequence */ + + ber = (float)*bit_errors/f->ntest_bits; + + *sync = 0; + if (ber < 0.2) + *sync = 1; + + *ntest_bits = f->ntest_bits; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: freq_state(() + AUTHOR......: David Rowe + DATE CREATED: 24/4/2012 + + Freq offset state machine. Moves between coarse and fine states + based on BPSK pilot sequence. Freq offset estimator occasionally + makes mistakes when used continuously. So we use it until we have + acquired the BPSK pilot, then switch to a more robust "fine" + tracking algorithm. If we lose sync we switch back to coarse mode + for fast re-acquisition of large frequency offsets. + + The sync state is also useful for higher layers to determine when + there is valid FDMDV data for decoding. We want to reliably and + quickly get into sync, stay in sync even on fading channels, and + fall out of sync quickly if tx stops or it's a false sync. + + In multipath fading channels the BPSK sync carrier may be pushed + down in the noise, despite other carriers being at full strength. + We want to avoid loss of sync in these cases. + +\*---------------------------------------------------------------------------*/ + +int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem) +{ + int next_state, sync, unique_word, i, corr; + + /* look for 6 symbols (120ms) 101010 of sync sequence */ + + unique_word = 0; + for(i=0; i<NSYNC_MEM-1; i++) + sync_mem[i] = sync_mem[i+1]; + sync_mem[i] = 1 - 2*sync_bit; + corr = 0; + for(i=0; i<NSYNC_MEM; i++) + corr += sync_mem[i]*sync_uw[i]; + if (abs(corr) == NSYNC_MEM) + unique_word = 1; + *reliable_sync_bit = (corr == NSYNC_MEM); + + /* iterate state machine */ + + next_state = *state; + switch(*state) { + case 0: + if (unique_word) { + next_state = 1; + *timer = 0; + } + break; + case 1: /* tentative sync state */ + if (unique_word) { + (*timer)++; + if (*timer == 25) /* sync has been good for 500ms */ + next_state = 2; + } + else + next_state = 0; /* quickly fall out of sync */ + break; + case 2: /* good sync state */ + if (unique_word == 0) { + *timer = 0; + next_state = 3; + } + break; + case 3: /* tentative bad state, but could be a fade */ + if (unique_word) + next_state = 2; + else { + (*timer)++; + if (*timer == 50) /* wait for 1000ms in case sync comes back */ + next_state = 0; + } + break; + } + + //printf("state: %d next_state: %d uw: %d timer: %d\n", *state, next_state, unique_word, *timer); + *state = next_state; + if (*state) + sync = 1; + else + sync = 0; + + return sync; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_demod() + AUTHOR......: David Rowe + DATE CREATED: 26/4/2012 + + FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME + modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits, + plus the sync bit. + + The input signal is complex to support single sided frequency shifting + before the demod input (e.g. fdmdv2 click to tune feature). + + The number of input samples nin will normally be M_FAC == + FDMDV_SAMPLES_PER_FRAME. However to adjust for differences in + transmit and receive sample clocks nin will occasionally be M_FAC-M_FAC/P, + or M_FAC+M_FAC/P. + +\*---------------------------------------------------------------------------*/ + + +void fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[], + int *reliable_sync_bit, COMP rx_fdm[], int *nin) +{ + float foff_coarse, foff_fine; + COMP rx_fdm_fcorr[M_FAC+M_FAC/P]; + COMP rx_fdm_filter[M_FAC+M_FAC/P]; + COMP rx_fdm_bb[M_FAC+M_FAC/P]; + COMP rx_filt[NC+1][P+1]; + COMP rx_symbols[NC+1]; + float env[NT*P]; + int sync_bit; + PROFILE_VAR(demod_start, fdmdv_freq_shift_start, down_convert_and_rx_filter_start); + PROFILE_VAR(rx_est_timing_start, qpsk_to_bits_start, snr_update_start, freq_state_start); + + /* shift down to complex baseband */ + + fdmdv_freq_shift(rx_fdm_bb, rx_fdm, -FDMDV_FCENTRE, &fdmdv->fbb_phase_rx, *nin); + + /* freq offset estimation and correction */ + + PROFILE_SAMPLE(demod_start); + foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm_bb, *nin, !fdmdv->sync); + PROFILE_SAMPLE_AND_LOG(fdmdv_freq_shift_start, demod_start, " rx_est_freq_offset"); + + if (fdmdv->sync == 0) + fdmdv->foff = foff_coarse; + fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm_bb, -fdmdv->foff, &fdmdv->foff_phase_rect, *nin); + PROFILE_SAMPLE_AND_LOG(down_convert_and_rx_filter_start, fdmdv_freq_shift_start, " fdmdv_freq_shift"); + + /* baseband processing */ + + rxdec_filter(rx_fdm_filter, rx_fdm_fcorr, fdmdv->rxdec_lpf_mem, *nin); + down_convert_and_rx_filter(rx_filt, fdmdv->Nc, rx_fdm_filter, fdmdv->rx_fdm_mem, fdmdv->phase_rx, fdmdv->freq, + fdmdv->freq_pol, *nin, M_FAC/Q); + PROFILE_SAMPLE_AND_LOG(rx_est_timing_start, down_convert_and_rx_filter_start, " down_convert_and_rx_filter"); + fdmdv->rx_timing = rx_est_timing(rx_symbols, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, *nin, M_FAC); + PROFILE_SAMPLE_AND_LOG(qpsk_to_bits_start, rx_est_timing_start, " rx_est_timing"); + + /* Adjust number of input samples to keep timing within bounds */ + + *nin = M_FAC; + + if (fdmdv->rx_timing > M_FAC/P) + *nin += M_FAC/P; + + if (fdmdv->rx_timing < -M_FAC/P) + *nin -= M_FAC/P; + + foff_fine = qpsk_to_bits(rx_bits, &sync_bit, fdmdv->Nc, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols, + fdmdv->old_qpsk_mapping); + memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(fdmdv->Nc+1)); + PROFILE_SAMPLE_AND_LOG(snr_update_start, qpsk_to_bits_start, " qpsk_to_bits"); + snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->Nc, fdmdv->phase_difference); + PROFILE_SAMPLE_AND_LOG(freq_state_start, snr_update_start, " snr_update"); + + /* freq offset estimation state machine */ + + fdmdv->sync = freq_state(reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem); + PROFILE_SAMPLE_AND_LOG2(freq_state_start, " freq_state"); + fdmdv->foff -= TRACK_COEFF*foff_fine; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: calc_snr() + AUTHOR......: David Rowe + DATE CREATED: 17 May 2012 + + Calculate current SNR estimate (3000Hz noise BW) + +\*---------------------------------------------------------------------------*/ + +float calc_snr(int Nc, float sig_est[], float noise_est[]) +{ + float S, SdB; + float mean, N50, N50dB, N3000dB; + float snr_dB; + int c; + + S = 0.0; + for(c=0; c<Nc+1; c++) { + S += sig_est[c] * sig_est[c]; + } + SdB = 10.0*log10f(S+1E-12); + + /* Average noise mag across all carriers and square to get an + average noise power. This is an estimate of the noise power in + Rs = 50Hz of BW (note for raised root cosine filters Rs is the + noise BW of the filter) */ + + mean = 0.0; + for(c=0; c<Nc+1; c++) + mean += noise_est[c]; + mean /= (Nc+1); + N50 = mean * mean; + N50dB = 10.0*log10f(N50+1E-12); + + /* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power + in 3000 Hz */ + + N3000dB = N50dB + 10.0*log10f(3000.0/RS); + + snr_dB = SdB - N3000dB; + + return snr_dB; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_get_demod_stats() + AUTHOR......: David Rowe + DATE CREATED: 1 May 2012 + + Fills stats structure with a bunch of demod information. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_get_demod_stats(struct FDMDV *fdmdv, struct MODEM_STATS *stats) +{ + assert(fdmdv->Nc <= MODEM_STATS_NC_MAX); + + stats->Nc = fdmdv->Nc; + stats->snr_est = calc_snr(fdmdv->Nc, fdmdv->sig_est, fdmdv->noise_est); + stats->sync = fdmdv->sync; + stats->foff = fdmdv->foff; + stats->rx_timing = fdmdv->rx_timing; + stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */ + +#ifndef __EMBEDDED__ + stats->nr = 1; + for(int c=0; c<fdmdv->Nc+1; c++) { + stats->rx_symbols[0][c] = fdmdv->phase_difference[c]; + } +#endif +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_8_to_16() + AUTHOR......: David Rowe + DATE CREATED: 9 May 2012 + + Changes the sample rate of a signal from 8 to 16 kHz. Support function for + SM1000. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_8_to_16(float out16k[], float in8k[], int n8k) +{ + int i,k,l; + float acc; + + /* this version unrolled for specific FDMDV_OS */ + + assert(FDMDV_OS == 2); + + for(i=0; i<n8k; i++) { + acc = 0.0; + for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++) + acc += fdmdv_os_filter[k]*in8k[i-l]; + out16k[i*FDMDV_OS] = FDMDV_OS*acc; + + acc = 0.0; + for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++) + acc += fdmdv_os_filter[k]*in8k[i-l]; + out16k[i*FDMDV_OS+1] = FDMDV_OS*acc; + } + + /* update filter memory */ + + for(i=-(FDMDV_OS_TAPS_8K); i<0; i++) + in8k[i] = in8k[i + n8k]; + +} + +void fdmdv_8_to_16_short(short out16k[], short in8k[], int n8k) +{ + int i,k,l; + float acc; + + /* this version unrolled for specific FDMDV_OS */ + + assert(FDMDV_OS == 2); + + for(i=0; i<n8k; i++) { + acc = 0.0; + for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++) + acc += fdmdv_os_filter[k]*(float)in8k[i-l]; + out16k[i*FDMDV_OS] = FDMDV_OS*acc; + + acc = 0.0; + for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++) + acc += fdmdv_os_filter[k]*(float)in8k[i-l]; + out16k[i*FDMDV_OS+1] = FDMDV_OS*acc; + } + + /* update filter memory */ + + for(i=-(FDMDV_OS_TAPS_8K); i<0; i++) + in8k[i] = in8k[i + n8k]; + +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_16_to_8() + AUTHOR......: David Rowe + DATE CREATED: 9 May 2012 + + Changes the sample rate of a signal from 16 to 8 kHz. + + n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n + samples at the 16 kHz rate. As above however a memory of + FDMDV_OS_TAPS samples is reqd for in16k[] (see t16_8.c unit test as example). + + Low pass filter the 16 kHz signal at 4 kHz using the same filter as + the upsampler, then just output every FDMDV_OS-th filtered sample. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_16_to_8(float out8k[], float in16k[], int n) +{ + float acc; + int i,j,k; + + for(i=0, k=0; k<n; i+=FDMDV_OS, k++) { + acc = 0.0; + for(j=0; j<FDMDV_OS_TAPS_16K; j++) + acc += fdmdv_os_filter[j]*in16k[i-j]; + out8k[k] = acc; + } + + /* update filter memory */ + + for(i=-FDMDV_OS_TAPS_16K; i<0; i++) + in16k[i] = in16k[i + n*FDMDV_OS]; +} + +void fdmdv_16_to_8_short(short out8k[], short in16k[], int n) +{ + float acc; + int i,j,k; + + for(i=0, k=0; k<n; i+=FDMDV_OS, k++) { + acc = 0.0; + for(j=0; j<FDMDV_OS_TAPS_16K; j++) + acc += fdmdv_os_filter[j]*(float)in16k[i-j]; + out8k[k] = acc; + } + + /* update filter memory */ + + for(i=-FDMDV_OS_TAPS_16K; i<0; i++) + in16k[i] = in16k[i + n*FDMDV_OS]; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_8_to_48() + AUTHOR......: David Rowe + DATE CREATED: 9 May 2012 + + Changes the sample rate of a signal from 8 to 48 kHz. + + n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n samples + at the 48 kHz rate. A memory of FDMDV_OS_TAPS_48/FDMDV_OS samples is reqd for + in8k[] (see t48_8.c unit test as example). + +\*---------------------------------------------------------------------------*/ + +void fdmdv_8_to_48(float out48k[], float in8k[], int n) +{ + int i,j,k,l; + + for(i=0; i<n; i++) { + for(j=0; j<FDMDV_OS_48; j++) { + out48k[i*FDMDV_OS_48+j] = 0.0; + for(k=0,l=0; k<FDMDV_OS_TAPS_48K; k+=FDMDV_OS_48,l++) + out48k[i*FDMDV_OS_48+j] += fdmdv_os_filter48[k+j]*in8k[i-l]; + out48k[i*FDMDV_OS_48+j] *= FDMDV_OS_48; + + } + } + + /* update filter memory */ + + for(i=-FDMDV_OS_TAPS_48_8K; i<0; i++) + in8k[i] = in8k[i + n]; +} + +void fdmdv_8_to_48_short(short out48k[], short in8k[], int n) +{ + int i,j,k,l; + float acc; + + for(i=0; i<n; i++) { + for(j=0; j<FDMDV_OS_48; j++) { + acc = 0.0; + for(k=0,l=0; k<FDMDV_OS_TAPS_48K; k+=FDMDV_OS_48,l++) + acc += fdmdv_os_filter48[k+j]*in8k[i-l]; + out48k[i*FDMDV_OS_48+j] = acc*FDMDV_OS_48; + } + } + + /* update filter memory */ + + for(i=-FDMDV_OS_TAPS_48_8K; i<0; i++) + in8k[i] = in8k[i + n]; +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_48_to_8() + AUTHOR......: David Rowe + DATE CREATED: 9 May 2012 + + Changes the sample rate of a signal from 48 to 8 kHz. + + n is the number of samples at the 8 kHz rate, there are FDMDV_OS_48*n + samples at the 48 kHz rate. As above however a memory of + FDMDV_OS_TAPS_48 samples is reqd for in48k[] (see t48_8.c unit test as example). + +\*---------------------------------------------------------------------------*/ + +void fdmdv_48_to_8(float out8k[], float in48k[], int n) +{ + int i,j; + + for(i=0; i<n; i++) { + out8k[i] = 0.0; + for(j=0; j<FDMDV_OS_TAPS_48K; j++) + out8k[i] += fdmdv_os_filter48[j]*in48k[i*FDMDV_OS_48-j]; + } + + /* update filter memory */ + + for(i=-FDMDV_OS_TAPS_48K; i<0; i++) + in48k[i] = in48k[i + n*FDMDV_OS_48]; +} + +void fdmdv_48_to_8_short(short out8k[], short in48k[], int n) +{ + int i,j; + float acc; + + for(i=0; i<n; i++) { + acc = 0.0; + for(j=0; j<FDMDV_OS_TAPS_48K; j++) + acc += fdmdv_os_filter48[j]*in48k[i*FDMDV_OS_48-j]; + out8k[i] = acc; + } + + /* update filter memory */ + + for(i=-FDMDV_OS_TAPS_48K; i<0; i++) + in48k[i] = in48k[i + n*FDMDV_OS_48]; +} + +/*---------------------------------------------------------------------------*\ + + Function used during development to test if magnitude of digital + oscillators was drifting. It was! + +\*---------------------------------------------------------------------------*/ + +void fdmdv_dump_osc_mags(struct FDMDV *f) +{ + int i; + + fprintf(stderr, "phase_tx[]:\n"); + for(i=0; i<=f->Nc; i++) + fprintf(stderr," %1.3f", (double)cabsolute(f->phase_tx[i])); + fprintf(stderr,"\nfreq[]:\n"); + for(i=0; i<=f->Nc; i++) + fprintf(stderr," %1.3f", (double)cabsolute(f->freq[i])); + fprintf(stderr,"\nfoff_phase_rect: %1.3f", (double)cabsolute(f->foff_phase_rect)); + fprintf(stderr,"\nphase_rx[]:\n"); + for(i=0; i<=f->Nc; i++) + fprintf(stderr," %1.3f", (double)cabsolute(f->phase_rx[i])); + fprintf(stderr, "\n\n"); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: randn() + AUTHOR......: David Rowe + DATE CREATED: 2 August 2014 + + Simple approximation to normal (gaussian) random number generator + with 0 mean and unit variance. + +\*---------------------------------------------------------------------------*/ + +#define RANDN_IT 12 /* This magic number of iterations gives us a + unit variance. I think because var = + (b-a)^2/12 for one uniform random variable, so + for a sum of n random variables it's + n(b-a)^2/12, or for b=1, a = 0, n=12, we get + var = 12(1-0)^2/12 = 1 */ + +static float randn() { + int i; + float rn = 0.0; + + for(i=0; i<RANDN_IT; i++) + rn += (float)rand()/RAND_MAX; + + rn -= (float)RANDN_IT/2.0; + return rn; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_simulate_channel() + AUTHOR......: David Rowe + DATE CREATED: 10 July 2014 + + Simple channel simulation function to aid in testing. Target SNR + uses noise measured in a 3 kHz bandwidth. + + Doesn't use fdmdv states so can be called from anywhere, e.g. non + fdmdv applications. + + TODO: Measured SNR is coming out a few dB higher than target_snr, this + needs to be fixed. + +\*---------------------------------------------------------------------------*/ + +void fdmdv_simulate_channel(float *sig_pwr_av, COMP samples[], int nin, float target_snr) +{ + float sig_pwr, target_snr_linear, noise_pwr, noise_pwr_1Hz, noise_pwr_4000Hz, noise_gain; + int i; + + /* prevent NAN when we divide by nin below */ + if (nin == 0) return; + + /* estimate signal power */ + + sig_pwr = 0.0; + for(i=0; i<nin; i++) + sig_pwr += samples[i].real*samples[i].real + samples[i].imag*samples[i].imag; + + sig_pwr /= nin; + + *sig_pwr_av = 0.9**sig_pwr_av + 0.1*sig_pwr; + + /* det noise to meet target SNR */ + + target_snr_linear = POW10F(target_snr/10.0); + noise_pwr = *sig_pwr_av/target_snr_linear; /* noise pwr in a 3000 Hz BW */ + noise_pwr_1Hz = noise_pwr/3000.0; /* noise pwr in a 1 Hz bandwidth */ + noise_pwr_4000Hz = noise_pwr_1Hz*4000.0; /* noise pwr in a 4000 Hz BW, which + due to fs=8000 Hz in our simulation noise BW */ + + noise_gain = sqrtf(0.5*noise_pwr_4000Hz); /* split noise pwr between real and imag sides */ + + for(i=0; i<nin; i++) { + samples[i].real += noise_gain*randn(); + samples[i].imag += noise_gain*randn(); + } + /* + fprintf(stderr, "sig_pwr: %f f->sig_pwr_av: %e target_snr_linear: %f noise_pwr_4000Hz: %e noise_gain: %e\n", + sig_pwr, *sig_pwr_av, target_snr_linear, noise_pwr_4000Hz, noise_gain); + */ +} |
