aboutsummaryrefslogtreecommitdiff
path: root/src/fdmdv.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fdmdv.c')
-rw-r--r--src/fdmdv.c2082
1 files changed, 2082 insertions, 0 deletions
diff --git a/src/fdmdv.c b/src/fdmdv.c
new file mode 100644
index 0000000..7aeb4b8
--- /dev/null
+++ b/src/fdmdv.c
@@ -0,0 +1,2082 @@
+/*---------------------------------------------------------------------------*\
+
+ FILE........: fdmdv.c
+ AUTHOR......: David Rowe
+ DATE CREATED: April 14 2012
+
+ Functions that implement the FDMDV modem.
+
+\*---------------------------------------------------------------------------*/
+
+/*
+ Copyright (C) 2012 David Rowe
+
+ All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License version 2.1, as
+ published by the Free Software Foundation. This program is
+ distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with this program; if not, see <http://www.gnu.org/licenses/>.
+*/
+
+/*---------------------------------------------------------------------------*\
+
+ INCLUDES
+
+\*---------------------------------------------------------------------------*/
+
+#include <assert.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+
+#include "fdmdv_internal.h"
+#include "codec2_fdmdv.h"
+#include "comp_prim.h"
+#include "rn.h"
+#include "rxdec_coeff.h"
+#include "test_bits.h"
+#include "pilot_coeff.h"
+#include "codec2_fft.h"
+#include "hanning.h"
+#include "os.h"
+#include "machdep.h"
+
+#include "debug_alloc.h"
+
+static int sync_uw[] = {1,-1,1,-1,1,-1};
+
+static const COMP pi_on_4 = { .70710678118654752439, .70710678118654752439 }; // cosf(PI/4) , sinf(PI/4)
+
+
+/*--------------------------------------------------------------------------* \
+
+ FUNCTION....: fdmdv_create
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Create and initialise an instance of the modem. Returns a pointer
+ to the modem states or NULL on failure. One set of states is
+ sufficient for a full duplex modem.
+
+\*---------------------------------------------------------------------------*/
+
+struct FDMDV * fdmdv_create(int Nc)
+{
+ struct FDMDV *f;
+ int c, i, k;
+
+ assert(NC == FDMDV_NC_MAX); /* check public and private #defines match */
+ assert(Nc <= NC);
+ assert(FDMDV_NOM_SAMPLES_PER_FRAME == M_FAC);
+ assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M_FAC+M_FAC/P));
+
+ f = (struct FDMDV*)MALLOC(sizeof(struct FDMDV));
+ if (f == NULL)
+ return NULL;
+
+ f->Nc = Nc;
+
+ f->ntest_bits = Nc*NB*4;
+ f->current_test_bit = 0;
+ f->rx_test_bits_mem = (int*)MALLOC(sizeof(int)*f->ntest_bits);
+ assert(f->rx_test_bits_mem != NULL);
+ for(i=0; i<f->ntest_bits; i++)
+ f->rx_test_bits_mem[i] = 0;
+ assert((sizeof(test_bits)/sizeof(int)) >= f->ntest_bits);
+
+ f->old_qpsk_mapping = 0;
+
+ f->tx_pilot_bit = 0;
+
+ for(c=0; c<Nc+1; c++) {
+ f->prev_tx_symbols[c].real = 1.0;
+ f->prev_tx_symbols[c].imag = 0.0;
+ f->prev_rx_symbols[c].real = 1.0;
+ f->prev_rx_symbols[c].imag = 0.0;
+
+ for(k=0; k<NSYM; k++) {
+ f->tx_filter_memory[c][k].real = 0.0;
+ f->tx_filter_memory[c][k].imag = 0.0;
+ }
+
+ /* Spread initial FDM carrier phase out as far as possible.
+ This helped PAPR for a few dB. We don't need to adjust rx
+ phase as DQPSK takes care of that. */
+
+ f->phase_tx[c].real = cosf(2.0*PI*c/(Nc+1));
+ f->phase_tx[c].imag = sinf(2.0*PI*c/(Nc+1));
+
+ f->phase_rx[c].real = 1.0;
+ f->phase_rx[c].imag = 0.0;
+
+ for(k=0; k<NT*P; k++) {
+ f->rx_filter_mem_timing[c][k].real = 0.0;
+ f->rx_filter_mem_timing[c][k].imag = 0.0;
+ }
+ }
+ f->prev_tx_symbols[Nc].real = 2.0;
+
+ fdmdv_set_fsep(f, FSEP);
+ f->freq[Nc].real = cosf(2.0*PI*0.0/FS);
+ f->freq[Nc].imag = sinf(2.0*PI*0.0/FS);
+ f->freq_pol[Nc] = 2.0*PI*0.0/FS;
+
+ f->fbb_rect.real = cosf(2.0*PI*FDMDV_FCENTRE/FS);
+ f->fbb_rect.imag = sinf(2.0*PI*FDMDV_FCENTRE/FS);
+ f->fbb_pol = 2.0*PI*FDMDV_FCENTRE/FS;
+ f->fbb_phase_tx.real = 1.0;
+ f->fbb_phase_tx.imag = 0.0;
+ f->fbb_phase_rx.real = 1.0;
+ f->fbb_phase_rx.imag = 0.0;
+
+ /* Generate DBPSK pilot Look Up Table (LUT) */
+
+ generate_pilot_lut(f->pilot_lut, &f->freq[Nc]);
+
+ /* freq Offset estimation states */
+
+ f->fft_pilot_cfg = codec2_fft_alloc (MPILOTFFT, 0, NULL, NULL);
+ assert(f->fft_pilot_cfg != NULL);
+
+ for(i=0; i<NPILOTBASEBAND; i++) {
+ f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0;
+ f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0;
+ }
+ f->pilot_lut_index = 0;
+ f->prev_pilot_lut_index = 3*M_FAC;
+
+ for(i=0; i<NRXDECMEM; i++) {
+ f->rxdec_lpf_mem[i].real = 0.0;
+ f->rxdec_lpf_mem[i].imag = 0.0;
+ }
+
+ for(i=0; i<NPILOTLPF; i++) {
+ f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0;
+ f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0;
+ }
+
+ f->foff = 0.0;
+ f->foff_phase_rect.real = 1.0;
+ f->foff_phase_rect.imag = 0.0;
+
+ for(i=0; i<NRX_FDM_MEM; i++) {
+ f->rx_fdm_mem[i].real = 0.0;
+ f->rx_fdm_mem[i].imag = 0.0;
+ }
+
+ f->fest_state = 0;
+ f->sync = 0;
+ f->timer = 0;
+ for(i=0; i<NSYNC_MEM; i++)
+ f->sync_mem[i] = 0;
+
+ for(c=0; c<Nc+1; c++) {
+ f->sig_est[c] = 0.0;
+ f->noise_est[c] = 0.0;
+ }
+
+ f->sig_pwr_av = 0.0;
+ f->foff_filt = 0.0;
+
+ return f;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_destroy
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Destroy an instance of the modem.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_destroy(struct FDMDV *fdmdv)
+{
+ assert(fdmdv != NULL);
+ codec2_fft_free(fdmdv->fft_pilot_cfg);
+ FREE(fdmdv->rx_test_bits_mem);
+ FREE(fdmdv);
+}
+
+
+void fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv) {
+ fdmdv->old_qpsk_mapping = 1;
+}
+
+
+int fdmdv_bits_per_frame(struct FDMDV *fdmdv)
+{
+ return (fdmdv->Nc * NB);
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_get_test_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Generate a frame of bits from a repeating sequence of random data. OK so
+ it's not very random if it repeats but it makes syncing at the demod easier
+ for test purposes.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[])
+{
+ int i;
+ int bits_per_frame = fdmdv_bits_per_frame(f);
+
+ for(i=0; i<bits_per_frame; i++) {
+ tx_bits[i] = test_bits[f->current_test_bit];
+ f->current_test_bit++;
+ if (f->current_test_bit > (f->ntest_bits-1))
+ f->current_test_bit = 0;
+ }
+}
+
+float fdmdv_get_fsep(struct FDMDV *f)
+{
+ return f->fsep;
+}
+
+void fdmdv_set_fsep(struct FDMDV *f, float fsep) {
+ int c;
+ float carrier_freq;
+
+ f->fsep = fsep;
+
+ /* Set up frequency of each carrier */
+
+ for(c=0; c<f->Nc/2; c++) {
+ carrier_freq = (-f->Nc/2 + c)*f->fsep;
+ f->freq[c].real = cosf(2.0*PI*carrier_freq/FS);
+ f->freq[c].imag = sinf(2.0*PI*carrier_freq/FS);
+ f->freq_pol[c] = 2.0*PI*carrier_freq/FS;
+ }
+
+ for(c=f->Nc/2; c<f->Nc; c++) {
+ carrier_freq = (-f->Nc/2 + c + 1)*f->fsep;
+ f->freq[c].real = cosf(2.0*PI*carrier_freq/FS);
+ f->freq[c].imag = sinf(2.0*PI*carrier_freq/FS);
+ f->freq_pol[c] = 2.0*PI*carrier_freq/FS;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: bits_to_dqpsk_symbols()
+ AUTHOR......: David Rowe
+ DATE CREATED: 16/4/2012
+
+ Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from
+ vector of (1,Nc*Nb) input tx_bits. The Nc+1 symbol is the +1 -1 +1
+ .... BPSK sync carrier.
+
+\*---------------------------------------------------------------------------*/
+
+void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping)
+{
+ int c, msb, lsb;
+ COMP j = {0.0,1.0};
+
+ /* Map tx_bits to to Nc DQPSK symbols. Note legacy support for
+ old (suboptimal) V0.91 FreeDV mapping */
+
+ for(c=0; c<Nc; c++) {
+ msb = tx_bits[2*c];
+ lsb = tx_bits[2*c+1];
+ if ((msb == 0) && (lsb == 0))
+ tx_symbols[c] = prev_tx_symbols[c];
+ if ((msb == 0) && (lsb == 1))
+ tx_symbols[c] = cmult(j, prev_tx_symbols[c]);
+ if ((msb == 1) && (lsb == 0)) {
+ if (old_qpsk_mapping)
+ tx_symbols[c] = cneg(prev_tx_symbols[c]);
+ else
+ tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
+ }
+ if ((msb == 1) && (lsb == 1)) {
+ if (old_qpsk_mapping)
+ tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
+ else
+ tx_symbols[c] = cneg(prev_tx_symbols[c]);
+ }
+ }
+
+ /* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly)
+ two spectral lines at +/- Rs/2 */
+
+ if (*pilot_bit)
+ tx_symbols[Nc] = cneg(prev_tx_symbols[Nc]);
+ else
+ tx_symbols[Nc] = prev_tx_symbols[Nc];
+
+ if (*pilot_bit)
+ *pilot_bit = 0;
+ else
+ *pilot_bit = 1;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: tx_filter()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17/4/2012
+
+ Given Nc*NB bits construct M_FAC samples (1 symbol) of Nc+1 filtered
+ symbols streams.
+
+\*---------------------------------------------------------------------------*/
+
+void tx_filter(COMP tx_baseband[NC+1][M_FAC], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM])
+{
+ int c;
+ int i,j,k;
+ float acc;
+ COMP gain;
+
+ gain.real = sqrtf(2.0)/2.0;
+ gain.imag = 0.0;
+
+ for(c=0; c<Nc+1; c++)
+ tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
+
+ /*
+ tx filter each symbol, generate M_FAC filtered output samples for each symbol.
+ Efficient polyphase filter techniques used as tx_filter_memory is sparse
+ */
+
+ for(i=0; i<M_FAC; i++) {
+ for(c=0; c<Nc+1; c++) {
+
+ /* filter real sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
+ acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
+ tx_baseband[c][i].real = acc;
+
+ /* filter imag sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
+ acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
+ tx_baseband[c][i].imag = acc;
+
+ }
+ }
+
+ /* shift memory, inserting zeros at end */
+
+ for(i=0; i<NSYM-1; i++)
+ for(c=0; c<Nc+1; c++)
+ tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
+
+ for(c=0; c<Nc+1; c++) {
+ tx_filter_memory[c][NSYM-1].real = 0.0;
+ tx_filter_memory[c][NSYM-1].imag = 0.0;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: tx_filter_and_upconvert()
+ AUTHOR......: David Rowe
+ DATE CREATED: 13 August 2014
+
+ Given Nc symbols construct M_FAC samples (1 symbol) of Nc+1 filtered
+ and upconverted symbols.
+
+\*---------------------------------------------------------------------------*/
+
+void tx_filter_and_upconvert(COMP tx_fdm[], int Nc, COMP tx_symbols[],
+ COMP tx_filter_memory[NC+1][NSYM],
+ COMP phase_tx[], COMP freq[],
+ COMP *fbb_phase, COMP fbb_rect)
+{
+ int c;
+ int i,j,k;
+ float acc;
+ COMP gain;
+ COMP tx_baseband;
+ COMP two = {2.0, 0.0};
+ float mag;
+
+ gain.real = sqrtf(2.0)/2.0;
+ gain.imag = 0.0;
+
+ for(i=0; i<M_FAC; i++) {
+ tx_fdm[i].real = 0.0;
+ tx_fdm[i].imag = 0.0;
+ }
+
+ for(c=0; c<Nc+1; c++)
+ tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
+
+ /*
+ tx filter each symbol, generate M_FAC filtered output samples for
+ each symbol, which we then freq shift and sum with other
+ carriers. Efficient polyphase filter techniques used as
+ tx_filter_memory is sparse
+ */
+
+ for(c=0; c<Nc+1; c++) {
+ for(i=0; i<M_FAC; i++) {
+
+ /* filter real sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
+ acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
+ tx_baseband.real = acc;
+
+ /* filter imag sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
+ acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
+ tx_baseband.imag = acc;
+
+ /* freq shift and sum */
+
+ phase_tx[c] = cmult(phase_tx[c], freq[c]);
+ tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c]));
+ }
+ }
+
+ /* shift whole thing up to carrier freq */
+
+ for (i=0; i<M_FAC; i++) {
+ *fbb_phase = cmult(*fbb_phase, fbb_rect);
+ tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
+ }
+
+ /*
+ Scale such that total Carrier power C of real(tx_fdm) = Nc. This
+ excludes the power of the pilot tone.
+ We return the complex (single sided) signal to make frequency
+ shifting for the purpose of testing easier
+ */
+
+ for (i=0; i<M_FAC; i++)
+ tx_fdm[i] = cmult(two, tx_fdm[i]);
+
+ /* normalise digital oscillators as the magnitude can drift over time */
+
+ for (c=0; c<Nc+1; c++) {
+ mag = cabsolute(phase_tx[c]);
+ phase_tx[c].real /= mag;
+ phase_tx[c].imag /= mag;
+ }
+
+ mag = cabsolute(*fbb_phase);
+ fbb_phase->real /= mag;
+ fbb_phase->imag /= mag;
+
+ /* shift memory, inserting zeros at end */
+
+ for(i=0; i<NSYM-1; i++)
+ for(c=0; c<Nc+1; c++)
+ tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
+
+ for(c=0; c<Nc+1; c++) {
+ tx_filter_memory[c][NSYM-1].real = 0.0;
+ tx_filter_memory[c][NSYM-1].imag = 0.0;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdm_upconvert()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17/4/2012
+
+ Construct FDM signal by frequency shifting each filtered symbol
+ stream. Returns complex signal so we can apply frequency offsets
+ easily.
+
+\*---------------------------------------------------------------------------*/
+
+void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M_FAC], COMP phase_tx[], COMP freq[],
+ COMP *fbb_phase, COMP fbb_rect)
+{
+ int i,c;
+ COMP two = {2.0, 0.0};
+ float mag;
+
+ for(i=0; i<M_FAC; i++) {
+ tx_fdm[i].real = 0.0;
+ tx_fdm[i].imag = 0.0;
+ }
+
+ for (c=0; c<=Nc; c++)
+ for (i=0; i<M_FAC; i++) {
+ phase_tx[c] = cmult(phase_tx[c], freq[c]);
+ tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
+ }
+
+ /* shift whole thing up to carrier freq */
+
+ for (i=0; i<M_FAC; i++) {
+ *fbb_phase = cmult(*fbb_phase, fbb_rect);
+ tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
+ }
+
+ /*
+ Scale such that total Carrier power C of real(tx_fdm) = Nc. This
+ excludes the power of the pilot tone.
+ We return the complex (single sided) signal to make frequency
+ shifting for the purpose of testing easier
+ */
+
+ for (i=0; i<M_FAC; i++)
+ tx_fdm[i] = cmult(two, tx_fdm[i]);
+
+ /* normalise digital oscilators as the magnitude can drift over time */
+
+ for (c=0; c<Nc+1; c++) {
+ mag = cabsolute(phase_tx[c]);
+ phase_tx[c].real /= mag;
+ phase_tx[c].imag /= mag;
+ }
+
+ mag = cabsolute(*fbb_phase);
+ fbb_phase->real /= mag;
+ fbb_phase->imag /= mag;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_mod()
+ AUTHOR......: David Rowe
+ DATE CREATED: 26/4/2012
+
+ FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and
+ generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols.
+ Sync bit is returned to aid alignment of your next frame.
+
+ The sync_bit value returned will be used for the _next_ frame.
+
+ The output signal is complex to support single sided frequency
+ shifting, for example when testing frequency offsets in channel
+ simulation.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[], int tx_bits[], int *sync_bit)
+{
+ COMP tx_symbols[NC+1];
+ PROFILE_VAR(mod_start, tx_filter_and_upconvert_start);
+
+ PROFILE_SAMPLE(mod_start);
+ bits_to_dqpsk_symbols(tx_symbols, fdmdv->Nc, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, fdmdv->old_qpsk_mapping);
+ memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
+ PROFILE_SAMPLE_AND_LOG(tx_filter_and_upconvert_start, mod_start, " bits_to_dqpsk_symbols");
+ tx_filter_and_upconvert(tx_fdm, fdmdv->Nc, tx_symbols, fdmdv->tx_filter_memory,
+ fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
+ PROFILE_SAMPLE_AND_LOG2(tx_filter_and_upconvert_start, " tx_filter_and_upconvert");
+
+ *sync_bit = fdmdv->tx_pilot_bit;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: generate_pilot_fdm()
+ AUTHOR......: David Rowe
+ DATE CREATED: 19/4/2012
+
+ Generate M_FAC samples of DBPSK pilot signal for Freq offset estimation.
+
+\*---------------------------------------------------------------------------*/
+
+void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol,
+ float *filter_mem, COMP *phase, COMP *freq)
+{
+ int i,j,k;
+ float tx_baseband[M_FAC];
+
+ /* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly)
+ two spectral lines at +/- RS/2 */
+
+ if (*bit)
+ *symbol = -*symbol;
+
+ if (*bit)
+ *bit = 0;
+ else
+ *bit = 1;
+
+ /* filter DPSK symbol to create M_FAC baseband samples */
+
+ filter_mem[NFILTER-1] = (sqrtf(2)/2) * *symbol;
+ for(i=0; i<M_FAC; i++) {
+ tx_baseband[i] = 0.0;
+ for(j=M_FAC-1,k=M_FAC-i-1; j<NFILTER; j+=M_FAC,k+=M_FAC)
+ tx_baseband[i] += M_FAC * filter_mem[j] * gt_alpha5_root[k];
+ }
+
+ /* shift memory, inserting zeros at end */
+
+ for(i=0; i<NFILTER-M_FAC; i++)
+ filter_mem[i] = filter_mem[i+M_FAC];
+
+ for(i=NFILTER-M_FAC; i<NFILTER; i++)
+ filter_mem[i] = 0.0;
+
+ /* upconvert */
+
+ for(i=0; i<M_FAC; i++) {
+ *phase = cmult(*phase, *freq);
+ pilot_fdm[i].real = sqrtf(2)*2*tx_baseband[i] * phase->real;
+ pilot_fdm[i].imag = sqrtf(2)*2*tx_baseband[i] * phase->imag;
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: generate_pilot_lut()
+ AUTHOR......: David Rowe
+ DATE CREATED: 19/4/2012
+
+ Generate a 4M sample vector of DBPSK pilot signal. As the pilot signal
+ is periodic in 4M samples we can then use this vector as a look up table
+ for pilot signal generation in the demod.
+
+\*---------------------------------------------------------------------------*/
+
+void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq)
+{
+ int pilot_rx_bit = 0;
+ float pilot_symbol = sqrtf(2.0);
+ COMP pilot_phase = {1.0, 0.0};
+ float pilot_filter_mem[NFILTER];
+ COMP pilot[M_FAC];
+ int i,f;
+
+ for(i=0; i<NFILTER; i++)
+ pilot_filter_mem[i] = 0.0;
+
+ /* discard first 4 symbols as filter memory is filling, just keep
+ last four symbols */
+
+ for(f=0; f<8; f++) {
+ generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq);
+ if (f >= 4)
+ memcpy(&pilot_lut[M_FAC*(f-4)], pilot, M_FAC*sizeof(COMP));
+ }
+
+ // create complex conjugate since we need this and only this later on
+ for (f=0;f<4*M_FAC;f++)
+ {
+ pilot_lut[f] = cconj(pilot_lut[f]);
+ }
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: lpf_peak_pick()
+ AUTHOR......: David Rowe
+ DATE CREATED: 20/4/2012
+
+ LPF and peak pick part of freq est, put in a function as we call it twice.
+
+\*---------------------------------------------------------------------------*/
+
+void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[],
+ COMP pilot_lpf[], codec2_fft_cfg fft_pilot_cfg, COMP S[], int nin,
+ int do_fft)
+{
+ int i,j,k;
+ int mpilot;
+ float mag, imax;
+ int ix;
+ float r;
+
+ /* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */
+
+ for(i=0; i<NPILOTLPF-nin; i++)
+ pilot_lpf[i] = pilot_lpf[nin+i];
+ for(i=NPILOTLPF-nin, j=NPILOTBASEBAND-nin; i<NPILOTLPF; i++,j++) {
+ pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0;
+
+ // STM32F4 hand optimized, this alone makes it go done from 1.6 to 1.17ms
+ // switching pilot_coeff to RAM (by removing const in pilot_coeff.h) would save
+ // another 0.11 ms at the expense of NPILOTCOEFF * 4 bytes == 120 bytes RAM
+
+ if (NPILOTCOEFF%5 == 0)
+ {
+ for(k=0; k<NPILOTCOEFF; k+=5)
+ {
+ COMP i0 = fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]);
+ COMP i1 = fcmult(pilot_coeff[k+1], pilot_baseband[j-NPILOTCOEFF+1+k+1]);
+ COMP i2 = fcmult(pilot_coeff[k+2], pilot_baseband[j-NPILOTCOEFF+1+k+2]);
+ COMP i3 = fcmult(pilot_coeff[k+3], pilot_baseband[j-NPILOTCOEFF+1+k+3]);
+ COMP i4 = fcmult(pilot_coeff[k+4], pilot_baseband[j-NPILOTCOEFF+1+k+4]);
+
+ pilot_lpf[i] = cadd(cadd(cadd(cadd(cadd(pilot_lpf[i], i0),i1),i2),i3),i4);
+ }
+ }
+ else
+ {
+ for(k=0; k<NPILOTCOEFF; k++)
+ {
+ pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]));
+ }
+
+ }
+ }
+
+ /* We only need to do FFTs if we are out of sync. Making them optional saves CPU in sync, which is when
+ we need to run the codec */
+
+ imax = 0.0;
+ *foff = 0.0;
+ for(i=0; i<MPILOTFFT; i++) {
+ S[i].real = 0.0;
+ S[i].imag = 0.0;
+ }
+
+ if (do_fft) {
+
+ /* decimate to improve DFT resolution, window and DFT */
+ mpilot = FS/(2*200); /* calc decimation rate given new sample rate is twice LPF freq */
+ for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) {
+ S[j] = fcmult(hanning[i], pilot_lpf[i]);
+ }
+
+ codec2_fft_inplace(fft_pilot_cfg, S);
+
+ /* peak pick and convert to Hz */
+
+ imax = 0.0;
+ ix = 0;
+ for(i=0; i<MPILOTFFT; i++) {
+ mag = S[i].real*S[i].real + S[i].imag*S[i].imag;
+ if (mag > imax) {
+ imax = mag;
+ ix = i;
+ }
+ }
+ r = 2.0*200.0/MPILOTFFT; /* maps FFT bin to frequency in Hz */
+
+ if (ix >= MPILOTFFT/2)
+ *foff = (ix - MPILOTFFT)*r;
+ else
+ *foff = (ix)*r;
+ }
+
+ *max = imax;
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rx_est_freq_offset()
+ AUTHOR......: David Rowe
+ DATE CREATED: 19/4/2012
+
+ Estimate frequency offset of FDM signal using BPSK pilot. Note that
+ this algorithm is quite sensitive to pilot tone level wrt other
+ carriers, so test variations to the pilot amplitude carefully.
+
+\*---------------------------------------------------------------------------*/
+
+float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin, int do_fft)
+{
+ int i;
+#ifndef FDV_ARM_MATH
+ int j;
+#endif
+ COMP pilot[M_FAC+M_FAC/P];
+ COMP prev_pilot[M_FAC+M_FAC/P];
+ float foff, foff1, foff2;
+ float max1, max2;
+
+ assert(nin <= M_FAC+M_FAC/P);
+
+ /* get pilot samples used for correlation/down conversion of rx signal */
+
+ for (i=0; i<nin; i++) {
+ pilot[i] = f->pilot_lut[f->pilot_lut_index];
+ f->pilot_lut_index++;
+ if (f->pilot_lut_index >= 4*M_FAC)
+ f->pilot_lut_index = 0;
+
+ prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index];
+ f->prev_pilot_lut_index++;
+ if (f->prev_pilot_lut_index >= 4*M_FAC)
+ f->prev_pilot_lut_index = 0;
+ }
+
+ /*
+ Down convert latest M_FAC samples of pilot by multiplying by ideal
+ BPSK pilot signal we have generated locally. The peak of the
+ resulting signal is sensitive to the time shift between the
+ received and local version of the pilot, so we do it twice at
+ different time shifts and choose the maximum.
+ */
+
+ for(i=0; i<NPILOTBASEBAND-nin; i++) {
+ f->pilot_baseband1[i] = f->pilot_baseband1[i+nin];
+ f->pilot_baseband2[i] = f->pilot_baseband2[i+nin];
+ }
+
+#ifndef FDV_ARM_MATH
+ for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) {
+ f->pilot_baseband1[j] = cmult(rx_fdm[i], pilot[i]);
+ f->pilot_baseband2[j] = cmult(rx_fdm[i], prev_pilot[i]);
+ }
+#else
+ // TODO: Maybe a handwritten mult taking advantage of rx_fdm[0] being
+ // used twice would be faster but this is for sure faster than
+ // the implementation above in any case.
+ arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&pilot[0].real,&f->pilot_baseband1[NPILOTBASEBAND-nin].real,nin);
+ arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&prev_pilot[0].real,&f->pilot_baseband2[NPILOTBASEBAND-nin].real,nin);
+#endif
+
+ lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin, do_fft);
+ lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin, do_fft);
+
+ if (max1 > max2)
+ foff = foff1;
+ else
+ foff = foff2;
+
+ return foff;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_freq_shift()
+ AUTHOR......: David Rowe
+ DATE CREATED: 26/4/2012
+
+ Frequency shift modem signal. The use of complex input and output allows
+ single sided frequency shifting (no images).
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff,
+ COMP *foff_phase_rect, int nin)
+{
+ COMP foff_rect;
+ float mag;
+ int i;
+
+ foff_rect.real = cosf(2.0*PI*foff/FS);
+ foff_rect.imag = sinf(2.0*PI*foff/FS);
+ for(i=0; i<nin; i++) {
+ *foff_phase_rect = cmult(*foff_phase_rect, foff_rect);
+ rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
+ }
+
+ /* normalise digital oscillator as the magnitude can drift over time */
+
+ mag = cabsolute(*foff_phase_rect);
+ foff_phase_rect->real /= mag;
+ foff_phase_rect->imag /= mag;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdm_downconvert
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/4/2012
+
+ Frequency shift each modem carrier down to Nc+1 baseband signals.
+
+\*---------------------------------------------------------------------------*/
+
+void fdm_downconvert(COMP rx_baseband[NC+1][M_FAC+M_FAC/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
+{
+ int i,c;
+ float mag;
+
+ /* maximum number of input samples to demod */
+
+ assert(nin <= (M_FAC+M_FAC/P));
+
+ /* downconvert */
+
+ for (c=0; c<Nc+1; c++)
+ for (i=0; i<nin; i++) {
+ phase_rx[c] = cmult(phase_rx[c], freq[c]);
+ rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
+ }
+
+ /* normalise digital oscilators as the magnitude can drift over time */
+
+ for (c=0; c<Nc+1; c++) {
+ mag = cabsolute(phase_rx[c]);
+ phase_rx[c].real /= mag;
+ phase_rx[c].imag /= mag;
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rx_filter()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/4/2012
+
+ Receive filter each baseband signal at oversample rate P. Filtering at
+ rate P lowers CPU compared to rate M_FAC.
+
+ Depending on the number of input samples to the demod nin, we
+ produce P-1, P (usually), or P+1 filtered samples at rate P. nin is
+ occasionally adjusted to compensate for timing slips due to
+ different tx and rx sample clocks.
+
+\*---------------------------------------------------------------------------*/
+
+void rx_filter(COMP rx_filt[][P+1], int Nc, COMP rx_baseband[][M_FAC+M_FAC/P], COMP rx_filter_memory[][NFILTER], int nin)
+{
+ int c, i,j,k,l;
+ int n=M_FAC/P;
+
+ /* rx filter each symbol, generate P filtered output samples for
+ each symbol. Note we keep filter memory at rate M_FAC, it's just
+ the filter output at rate P */
+
+ for(i=0, j=0; i<nin; i+=n,j++) {
+
+ /* latest input sample */
+
+ for(c=0; c<Nc+1; c++)
+ for(k=NFILTER-n,l=i; k<NFILTER; k++,l++)
+ rx_filter_memory[c][k] = rx_baseband[c][l];
+
+ /* convolution (filtering) */
+
+ for(c=0; c<Nc+1; c++) {
+ rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0;
+ for(k=0; k<NFILTER; k++)
+ rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k]));
+ }
+
+ /* make room for next input sample */
+
+ for(c=0; c<Nc+1; c++)
+ for(k=0,l=n; k<NFILTER-n; k++,l++)
+ rx_filter_memory[c][k] = rx_filter_memory[c][l];
+ }
+
+ assert(j <= (P+1)); /* check for any over runs */
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rxdec_filter()
+ AUTHOR......: David Rowe
+ DATE CREATED: 31 July 2014
+
+ +/- 1000Hz low pass filter, allows us to filter at rate Q to save CPU load.
+
+\*---------------------------------------------------------------------------*/
+
+void rxdec_filter(COMP rx_fdm_filter[], COMP rx_fdm[], COMP rxdec_lpf_mem[], int nin) {
+ int i,j,k,st;
+
+ for(i=0; i<NRXDECMEM-nin; i++)
+ rxdec_lpf_mem[i] = rxdec_lpf_mem[i+nin];
+ for(i=0, j=NRXDECMEM-nin; i<nin; i++,j++)
+ rxdec_lpf_mem[j] = rx_fdm[i];
+
+ st = NRXDECMEM - nin - NRXDEC + 1;
+ for(i=0; i<nin; i++) {
+ rx_fdm_filter[i].real = 0.0;
+ for(k=0; k<NRXDEC; k++)
+ rx_fdm_filter[i].real += rxdec_lpf_mem[st+i+k].real * rxdec_coeff[k];
+ rx_fdm_filter[i].imag = 0.0;
+ for(k=0; k<NRXDEC; k++)
+ rx_fdm_filter[i].imag += rxdec_lpf_mem[st+i+k].imag * rxdec_coeff[k];
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fir_filter2()
+ AUTHOR......: Danilo Beuche
+ DATE CREATED: August 2016
+
+ This version submitted by Danilo for the STM32F4 platform. The idea
+ is to avoid reading the same value from the STM32F4 "slow" flash
+ twice. 2-4ms of savings per frame were measured by Danilo and the mcHF
+ team.
+
+\*---------------------------------------------------------------------------*/
+
+static void fir_filter2(float acc[], float mem[], const float coeff[], const unsigned int dec_rate) {
+ acc[0] = 0.0;
+ acc[1] = 0.0;
+
+ float c1,c2,c3,c4,c5,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,a1,a2;
+ float* inpCmplx = &mem[0];
+ const float* coeffPtr = &coeff[0];
+
+ int m;
+
+ // this manual loop unrolling gives significant boost on STM32 machines
+ // reduction from avg 3.2ms to 2.4ms in tfdmv.c test
+ // 5 was the sweet spot, with 6 it took longer again
+ // and should not harm other, more powerful machines
+ // no significant difference in output, only rounding (which was to be expected)
+ // TODO: try to move coeffs to RAM and check if it makes a significant difference
+ if (NFILTER%(dec_rate*5) == 0) {
+ for(m=0; m<NFILTER; m+=dec_rate*5) {
+ c1 = *coeffPtr;
+
+ m1 = inpCmplx[0];
+ m2 = inpCmplx[1];
+
+ inpCmplx+= dec_rate*2;
+ coeffPtr+= dec_rate;
+
+ c2 = *coeffPtr;
+ m3 = inpCmplx[0];
+ m4 = inpCmplx[1];
+
+ inpCmplx+= dec_rate*2;
+ coeffPtr+= dec_rate;
+
+ c3 = *coeffPtr;
+ m5 = inpCmplx[0];
+ m6 = inpCmplx[1];
+
+ inpCmplx+= dec_rate*2;
+ coeffPtr+= dec_rate;
+
+ c4 = *coeffPtr;
+ m7 = inpCmplx[0];
+ m8 = inpCmplx[1];
+
+ inpCmplx+= dec_rate*2;
+ coeffPtr+= dec_rate;
+
+ c5 = *coeffPtr;
+ m9 = inpCmplx[0];
+ m10 = inpCmplx[1];
+
+ inpCmplx+= dec_rate*2;
+ coeffPtr+= dec_rate;
+
+ a1 = c1 * m1 + c2 * m3 + c3 * m5 + c4 * m7 + c5 * m9;
+ a2 = c1 * m2 + c2 * m4 + c3 * m6 + c4 * m8 + c5 * m10;
+ acc[0] += a1;
+ acc[1] += a2;
+ }
+ }
+ else
+ {
+ for(m=0; m<NFILTER; m+=dec_rate) {
+ c1 = *coeffPtr;
+
+ m1 = inpCmplx[0];
+ m2 = inpCmplx[1];
+
+ inpCmplx+= dec_rate*2;
+ coeffPtr+= dec_rate;
+
+ a1 = c1 * m1;
+ a2 = c1 * m2;
+ acc[0] += a1;
+ acc[1] += a2;
+ }
+ }
+ acc[0] *= dec_rate;
+ acc[1] *= dec_rate;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: down_convert_and_rx_filter()
+ AUTHOR......: David Rowe
+ DATE CREATED: 30/6/2014
+
+ Combined down convert and rx filter, more memory efficient but less
+ intuitive design.
+
+ Depending on the number of input samples to the demod nin, we
+ produce P-1, P (usually), or P+1 filtered samples at rate P. nin is
+ occasionally adjusted to compensate for timing slips due to
+ different tx and rx sample clocks.
+
+\*---------------------------------------------------------------------------*/
+
+/*
+ TODO: [ ] windback phase calculated once at init time
+*/
+
+void down_convert_and_rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_fdm[],
+ COMP rx_fdm_mem[], COMP phase_rx[], COMP freq[],
+ float freq_pol[], int nin, int dec_rate)
+{
+ int i,k,c,st,Nval;
+ float windback_phase, mag;
+ COMP windback_phase_rect;
+ COMP rx_baseband[NRX_FDM_MEM];
+ COMP f_rect;
+
+ //PROFILE_VAR(windback_start, downconvert_start, filter_start);
+
+ /* update memory of rx_fdm */
+
+#if 0
+ for(i=0; i<NRX_FDM_MEM-nin; i++)
+ rx_fdm_mem[i] = rx_fdm_mem[i+nin];
+ for(i=NFILTER+M_FAC-nin, k=0; i<NFILTER+M_FAC; i++, k++)
+ rx_fdm_mem[i] = rx_fdm[k];
+#else
+ // this gives only 40uS gain on STM32 but now that we have, we keep it
+ memmove(&rx_fdm_mem[0],&rx_fdm_mem[nin],(NRX_FDM_MEM-nin)*sizeof(COMP));
+ memcpy(&rx_fdm_mem[NRX_FDM_MEM-nin],&rx_fdm[0],nin*sizeof(COMP));
+#endif
+ for(c=0; c<Nc+1; c++) {
+
+ /*
+
+ So we have rx_fdm_mem, a baseband array of samples at
+ rate Fs Hz, including the last nin samples at the end. To
+ filter each symbol we require the baseband samples for all Nsym
+ symbols that we filter over. So we need to downconvert the
+ entire rx_fdm_mem array. To downconvert these we need the LO
+ phase referenced to the start of the rx_fdm_mem array.
+
+
+ <--------------- Nrx_filt_mem ------->
+ nin
+ |--------------------------|---------|
+ 1 |
+ phase_rx(c)
+
+ This means winding phase(c) back from this point
+ to ensure phase continuity.
+
+ */
+
+ //PROFILE_SAMPLE(windback_start);
+ windback_phase = -freq_pol[c]*NFILTER;
+ windback_phase_rect.real = cosf(windback_phase);
+ windback_phase_rect.imag = sinf(windback_phase);
+ phase_rx[c] = cmult(phase_rx[c],windback_phase_rect);
+ //PROFILE_SAMPLE_AND_LOG(downconvert_start, windback_start, " windback");
+
+ /* down convert all samples in buffer */
+
+ st = NRX_FDM_MEM-1; /* end of buffer */
+ st -= nin-1; /* first new sample */
+ st -= NFILTER; /* first sample used in filtering */
+
+ /* freq shift per dec_rate step is dec_rate times original shift */
+
+ f_rect = freq[c];
+ for(i=0; i<dec_rate-1; i++)
+ f_rect = cmult(f_rect,freq[c]);
+
+ for(i=st; i<NRX_FDM_MEM; i+=dec_rate) {
+ phase_rx[c] = cmult(phase_rx[c], f_rect);
+ rx_baseband[i] = cmult(rx_fdm_mem[i],cconj(phase_rx[c]));
+ }
+ //PROFILE_SAMPLE_AND_LOG(filter_start, downconvert_start, " downconvert");
+
+ /* now we can filter this carrier's P symbols */
+
+ Nval=M_FAC/P;
+ for(i=0, k=0; i<nin; i+=Nval, k++) {
+#ifdef ORIG
+ rx_filt[c][k].real = 0.0; rx_filt[c][k].imag = 0.0;
+
+ for(m=0; m<NFILTER; m++)
+ rx_filt[c][k] = cadd(rx_filt[c][k], fcmult(gt_alpha5_root[m], rx_baseband[st+i+m]));
+#else
+ // rx_filt[c][k].real = fir_filter(&rx_baseband[st+i].real, (float*)gt_alpha5_root, dec_rate);
+ // rx_filt[c][k].imag = fir_filter(&rx_baseband[st+i].imag, (float*)gt_alpha5_root, dec_rate);
+ fir_filter2(&rx_filt[c][k].real,&rx_baseband[st+i].real, gt_alpha5_root, dec_rate);
+#endif
+ }
+ //PROFILE_SAMPLE_AND_LOG2(filter_start, " filter");
+
+ /* normalise digital oscilators as the magnitude can drift over time */
+
+ mag = cabsolute(phase_rx[c]);
+ phase_rx[c].real /= mag;
+ phase_rx[c].imag /= mag;
+
+ //printf("phase_rx[%d] = %f %f\n", c, phase_rx[c].real, phase_rx[c].imag);
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rx_est_timing()
+ AUTHOR......: David Rowe
+ DATE CREATED: 23/4/2012
+
+ Estimate optimum timing offset, re-filter receive symbols at optimum
+ timing estimate.
+
+\*---------------------------------------------------------------------------*/
+
+float rx_est_timing(COMP rx_symbols[],
+ int Nc,
+ COMP rx_filt[][P+1],
+ COMP rx_filter_mem_timing[][NT*P],
+ float env[],
+ int nin,
+ int m)
+{
+ int c,i,j;
+ int adjust;
+ COMP x, phase, freq;
+ float rx_timing, fract, norm_rx_timing;
+ int low_sample, high_sample;
+
+ /*
+ nin adjust
+ --------------------------------
+ 120 -1 (one less rate P sample)
+ 160 0 (nominal)
+ 200 1 (one more rate P sample)
+ */
+
+ adjust = P - nin*P/m;
+
+ /* update buffer of NT rate P filtered symbols */
+
+ for(c=0; c<Nc+1; c++)
+ for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++)
+ rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j];
+ for(c=0; c<Nc+1; c++)
+ for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++)
+ rx_filter_mem_timing[c][i] = rx_filt[c][j];
+
+ /* sum envelopes of all carriers */
+
+ for(i=0; i<NT*P; i++) {
+ env[i] = 0.0;
+ for(c=0; c<Nc+1; c++)
+ env[i] += cabsolute(rx_filter_mem_timing[c][i]);
+ }
+
+ /* The envelope has a frequency component at the symbol rate. The
+ phase of this frequency component indicates the timing. So work
+ out single DFT at frequency 2*pi/P */
+
+ x.real = 0.0; x.imag = 0.0;
+ freq.real = cosf(2*PI/P);
+ freq.imag = sinf(2*PI/P);
+ phase.real = 1.0;
+ phase.imag = 0.0;
+
+ for(i=0; i<NT*P; i++) {
+ x = cadd(x, fcmult(env[i], phase));
+ phase = cmult(phase, freq);
+ }
+
+ /* Map phase to estimated optimum timing instant at rate P. The
+ P/4 part was adjusted by experiment, I know not why.... */
+
+ norm_rx_timing = atan2f(x.imag, x.real)/(2*PI);
+ assert(fabsf(norm_rx_timing) < 1.0);
+ rx_timing = norm_rx_timing*P + P/4;
+
+ if (rx_timing > P)
+ rx_timing -= P;
+ if (rx_timing < -P)
+ rx_timing += P;
+
+ /* rx_filter_mem_timing contains Nt*P samples (Nt symbols at rate
+ P), where Nt is odd. Lets use linear interpolation to resample
+ in the centre of the timing estimation window .*/
+
+ rx_timing += floorf(NT/2.0)*P;
+ low_sample = floorf(rx_timing);
+ fract = rx_timing - low_sample;
+ high_sample = ceilf(rx_timing);
+
+ //printf("rx_timing: %f low_sample: %d high_sample: %d fract: %f\n", rx_timing, low_sample, high_sample, fract);
+
+ for(c=0; c<Nc+1; c++) {
+ rx_symbols[c] = cadd(fcmult(1.0-fract, rx_filter_mem_timing[c][low_sample-1]), fcmult(fract, rx_filter_mem_timing[c][high_sample-1]));
+ //rx_symbols[c] = rx_filter_mem_timing[c][high_sample];
+ }
+
+ /* This value will be +/- half a symbol so will wrap around at +/-
+ M/2 or +/- 80 samples with M=160 */
+
+ return norm_rx_timing*m;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: qpsk_to_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: 24/4/2012
+
+ Convert DQPSK symbols back to an array of bits, extracts sync bit
+ from DBPSK pilot, and also uses pilot to estimate fine frequency
+ error.
+
+\*---------------------------------------------------------------------------*/
+
+float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[],
+ COMP rx_symbols[], int old_qpsk_mapping)
+{
+ int c;
+ COMP d;
+ int msb=0, lsb=0;
+ float ferr, norm;
+
+
+ /* Extra 45 degree clockwise lets us use real and imag axis as
+ decision boundaries. "norm" makes sure the phase subtraction
+ from the previous symbol doesn't affect the amplitude, which
+ leads to sensible scatter plots */
+
+ for(c=0; c<Nc; c++) {
+ norm = 1.0/(cabsolute(prev_rx_symbols[c])+1E-6);
+ phase_difference[c] = cmult(cmult(rx_symbols[c], fcmult(norm,cconj(prev_rx_symbols[c]))), pi_on_4);
+ }
+
+ /* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */
+
+ for (c=0; c<Nc; c++) {
+ d = phase_difference[c];
+ if ((d.real >= 0) && (d.imag >= 0)) {
+ msb = 0; lsb = 0;
+ }
+ if ((d.real < 0) && (d.imag >= 0)) {
+ msb = 0; lsb = 1;
+ }
+ if ((d.real < 0) && (d.imag < 0)) {
+ if (old_qpsk_mapping) {
+ msb = 1; lsb = 0;
+ } else {
+ msb = 1; lsb = 1;
+ }
+ }
+ if ((d.real >= 0) && (d.imag < 0)) {
+ if (old_qpsk_mapping) {
+ msb = 1; lsb = 1;
+ } else {
+ msb = 1; lsb = 0;
+ }
+ }
+ rx_bits[2*c] = msb;
+ rx_bits[2*c+1] = lsb;
+ }
+
+ /* Extract DBPSK encoded Sync bit and fine freq offset estimate */
+
+ norm = 1.0/(cabsolute(prev_rx_symbols[Nc])+1E-6);
+ phase_difference[Nc] = cmult(rx_symbols[Nc], fcmult(norm, cconj(prev_rx_symbols[Nc])));
+ if (phase_difference[Nc].real < 0) {
+ *sync_bit = 1;
+ ferr = phase_difference[Nc].imag*norm; /* make f_err magnitude insensitive */
+ }
+ else {
+ *sync_bit = 0;
+ ferr = -phase_difference[Nc].imag*norm;
+ }
+
+ /* pilot carrier gets an extra pi/4 rotation to make it consistent
+ with other carriers, as we need it for snr_update and scatter
+ diagram */
+
+ phase_difference[Nc] = cmult(phase_difference[Nc], pi_on_4);
+
+ return ferr;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: snr_update()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17 May 2012
+
+ Given phase differences update estimates of signal and noise levels.
+
+\*---------------------------------------------------------------------------*/
+
+void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[])
+{
+ float s[NC+1];
+ COMP refl_symbols[NC+1];
+ float n[NC+1];
+ int c;
+
+
+ /* mag of each symbol is distance from origin, this gives us a
+ vector of mags, one for each carrier. */
+
+ for(c=0; c<Nc+1; c++)
+ s[c] = cabsolute(phase_difference[c]);
+
+ /* signal mag estimate for each carrier is a smoothed version of
+ instantaneous magntitude, this gives us a vector of smoothed
+ mag estimates, one for each carrier. */
+
+ for(c=0; c<Nc+1; c++)
+ sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c];
+
+ /* noise mag estimate is distance of current symbol from average
+ location of that symbol. We reflect all symbols into the first
+ quadrant for convenience. */
+
+ for(c=0; c<Nc+1; c++) {
+ refl_symbols[c].real = fabsf(phase_difference[c].real);
+ refl_symbols[c].imag = fabsf(phase_difference[c].imag);
+ n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c])));
+ }
+
+ /* noise mag estimate for each carrier is a smoothed version of
+ instantaneous noise mag, this gives us a vector of smoothed
+ noise power estimates, one for each carrier. */
+
+ for(c=0; c<Nc+1; c++)
+ noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c];
+}
+
+// returns number of shorts in error_pattern[], one short per error
+
+int fdmdv_error_pattern_size(struct FDMDV *f) {
+ return f->ntest_bits;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_put_test_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: 24/4/2012
+
+ Accepts nbits from rx and attempts to sync with test_bits sequence.
+ If sync OK measures bit errors.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[],
+ int *bit_errors, int *ntest_bits, int rx_bits[])
+{
+ int i,j;
+ float ber;
+ int bits_per_frame = fdmdv_bits_per_frame(f);
+
+ /* Append to our memory */
+
+ for(i=0,j=bits_per_frame; i<f->ntest_bits-bits_per_frame; i++,j++)
+ f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j];
+ for(i=f->ntest_bits-bits_per_frame,j=0; i<f->ntest_bits; i++,j++)
+ f->rx_test_bits_mem[i] = rx_bits[j];
+
+ /* see how many bit errors we get when checked against test sequence */
+
+ *bit_errors = 0;
+ for(i=0; i<f->ntest_bits; i++) {
+ error_pattern[i] = test_bits[i] ^ f->rx_test_bits_mem[i];
+ *bit_errors += error_pattern[i];
+ //printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]);
+ }
+
+ /* if less than a thresh we are aligned and in sync with test sequence */
+
+ ber = (float)*bit_errors/f->ntest_bits;
+
+ *sync = 0;
+ if (ber < 0.2)
+ *sync = 1;
+
+ *ntest_bits = f->ntest_bits;
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: freq_state(()
+ AUTHOR......: David Rowe
+ DATE CREATED: 24/4/2012
+
+ Freq offset state machine. Moves between coarse and fine states
+ based on BPSK pilot sequence. Freq offset estimator occasionally
+ makes mistakes when used continuously. So we use it until we have
+ acquired the BPSK pilot, then switch to a more robust "fine"
+ tracking algorithm. If we lose sync we switch back to coarse mode
+ for fast re-acquisition of large frequency offsets.
+
+ The sync state is also useful for higher layers to determine when
+ there is valid FDMDV data for decoding. We want to reliably and
+ quickly get into sync, stay in sync even on fading channels, and
+ fall out of sync quickly if tx stops or it's a false sync.
+
+ In multipath fading channels the BPSK sync carrier may be pushed
+ down in the noise, despite other carriers being at full strength.
+ We want to avoid loss of sync in these cases.
+
+\*---------------------------------------------------------------------------*/
+
+int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem)
+{
+ int next_state, sync, unique_word, i, corr;
+
+ /* look for 6 symbols (120ms) 101010 of sync sequence */
+
+ unique_word = 0;
+ for(i=0; i<NSYNC_MEM-1; i++)
+ sync_mem[i] = sync_mem[i+1];
+ sync_mem[i] = 1 - 2*sync_bit;
+ corr = 0;
+ for(i=0; i<NSYNC_MEM; i++)
+ corr += sync_mem[i]*sync_uw[i];
+ if (abs(corr) == NSYNC_MEM)
+ unique_word = 1;
+ *reliable_sync_bit = (corr == NSYNC_MEM);
+
+ /* iterate state machine */
+
+ next_state = *state;
+ switch(*state) {
+ case 0:
+ if (unique_word) {
+ next_state = 1;
+ *timer = 0;
+ }
+ break;
+ case 1: /* tentative sync state */
+ if (unique_word) {
+ (*timer)++;
+ if (*timer == 25) /* sync has been good for 500ms */
+ next_state = 2;
+ }
+ else
+ next_state = 0; /* quickly fall out of sync */
+ break;
+ case 2: /* good sync state */
+ if (unique_word == 0) {
+ *timer = 0;
+ next_state = 3;
+ }
+ break;
+ case 3: /* tentative bad state, but could be a fade */
+ if (unique_word)
+ next_state = 2;
+ else {
+ (*timer)++;
+ if (*timer == 50) /* wait for 1000ms in case sync comes back */
+ next_state = 0;
+ }
+ break;
+ }
+
+ //printf("state: %d next_state: %d uw: %d timer: %d\n", *state, next_state, unique_word, *timer);
+ *state = next_state;
+ if (*state)
+ sync = 1;
+ else
+ sync = 0;
+
+ return sync;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_demod()
+ AUTHOR......: David Rowe
+ DATE CREATED: 26/4/2012
+
+ FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME
+ modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits,
+ plus the sync bit.
+
+ The input signal is complex to support single sided frequency shifting
+ before the demod input (e.g. fdmdv2 click to tune feature).
+
+ The number of input samples nin will normally be M_FAC ==
+ FDMDV_SAMPLES_PER_FRAME. However to adjust for differences in
+ transmit and receive sample clocks nin will occasionally be M_FAC-M_FAC/P,
+ or M_FAC+M_FAC/P.
+
+\*---------------------------------------------------------------------------*/
+
+
+void fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[],
+ int *reliable_sync_bit, COMP rx_fdm[], int *nin)
+{
+ float foff_coarse, foff_fine;
+ COMP rx_fdm_fcorr[M_FAC+M_FAC/P];
+ COMP rx_fdm_filter[M_FAC+M_FAC/P];
+ COMP rx_fdm_bb[M_FAC+M_FAC/P];
+ COMP rx_filt[NC+1][P+1];
+ COMP rx_symbols[NC+1];
+ float env[NT*P];
+ int sync_bit;
+ PROFILE_VAR(demod_start, fdmdv_freq_shift_start, down_convert_and_rx_filter_start);
+ PROFILE_VAR(rx_est_timing_start, qpsk_to_bits_start, snr_update_start, freq_state_start);
+
+ /* shift down to complex baseband */
+
+ fdmdv_freq_shift(rx_fdm_bb, rx_fdm, -FDMDV_FCENTRE, &fdmdv->fbb_phase_rx, *nin);
+
+ /* freq offset estimation and correction */
+
+ PROFILE_SAMPLE(demod_start);
+ foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm_bb, *nin, !fdmdv->sync);
+ PROFILE_SAMPLE_AND_LOG(fdmdv_freq_shift_start, demod_start, " rx_est_freq_offset");
+
+ if (fdmdv->sync == 0)
+ fdmdv->foff = foff_coarse;
+ fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm_bb, -fdmdv->foff, &fdmdv->foff_phase_rect, *nin);
+ PROFILE_SAMPLE_AND_LOG(down_convert_and_rx_filter_start, fdmdv_freq_shift_start, " fdmdv_freq_shift");
+
+ /* baseband processing */
+
+ rxdec_filter(rx_fdm_filter, rx_fdm_fcorr, fdmdv->rxdec_lpf_mem, *nin);
+ down_convert_and_rx_filter(rx_filt, fdmdv->Nc, rx_fdm_filter, fdmdv->rx_fdm_mem, fdmdv->phase_rx, fdmdv->freq,
+ fdmdv->freq_pol, *nin, M_FAC/Q);
+ PROFILE_SAMPLE_AND_LOG(rx_est_timing_start, down_convert_and_rx_filter_start, " down_convert_and_rx_filter");
+ fdmdv->rx_timing = rx_est_timing(rx_symbols, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, *nin, M_FAC);
+ PROFILE_SAMPLE_AND_LOG(qpsk_to_bits_start, rx_est_timing_start, " rx_est_timing");
+
+ /* Adjust number of input samples to keep timing within bounds */
+
+ *nin = M_FAC;
+
+ if (fdmdv->rx_timing > M_FAC/P)
+ *nin += M_FAC/P;
+
+ if (fdmdv->rx_timing < -M_FAC/P)
+ *nin -= M_FAC/P;
+
+ foff_fine = qpsk_to_bits(rx_bits, &sync_bit, fdmdv->Nc, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols,
+ fdmdv->old_qpsk_mapping);
+ memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
+ PROFILE_SAMPLE_AND_LOG(snr_update_start, qpsk_to_bits_start, " qpsk_to_bits");
+ snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->Nc, fdmdv->phase_difference);
+ PROFILE_SAMPLE_AND_LOG(freq_state_start, snr_update_start, " snr_update");
+
+ /* freq offset estimation state machine */
+
+ fdmdv->sync = freq_state(reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem);
+ PROFILE_SAMPLE_AND_LOG2(freq_state_start, " freq_state");
+ fdmdv->foff -= TRACK_COEFF*foff_fine;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: calc_snr()
+ AUTHOR......: David Rowe
+ DATE CREATED: 17 May 2012
+
+ Calculate current SNR estimate (3000Hz noise BW)
+
+\*---------------------------------------------------------------------------*/
+
+float calc_snr(int Nc, float sig_est[], float noise_est[])
+{
+ float S, SdB;
+ float mean, N50, N50dB, N3000dB;
+ float snr_dB;
+ int c;
+
+ S = 0.0;
+ for(c=0; c<Nc+1; c++) {
+ S += sig_est[c] * sig_est[c];
+ }
+ SdB = 10.0*log10f(S+1E-12);
+
+ /* Average noise mag across all carriers and square to get an
+ average noise power. This is an estimate of the noise power in
+ Rs = 50Hz of BW (note for raised root cosine filters Rs is the
+ noise BW of the filter) */
+
+ mean = 0.0;
+ for(c=0; c<Nc+1; c++)
+ mean += noise_est[c];
+ mean /= (Nc+1);
+ N50 = mean * mean;
+ N50dB = 10.0*log10f(N50+1E-12);
+
+ /* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power
+ in 3000 Hz */
+
+ N3000dB = N50dB + 10.0*log10f(3000.0/RS);
+
+ snr_dB = SdB - N3000dB;
+
+ return snr_dB;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_get_demod_stats()
+ AUTHOR......: David Rowe
+ DATE CREATED: 1 May 2012
+
+ Fills stats structure with a bunch of demod information.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_get_demod_stats(struct FDMDV *fdmdv, struct MODEM_STATS *stats)
+{
+ assert(fdmdv->Nc <= MODEM_STATS_NC_MAX);
+
+ stats->Nc = fdmdv->Nc;
+ stats->snr_est = calc_snr(fdmdv->Nc, fdmdv->sig_est, fdmdv->noise_est);
+ stats->sync = fdmdv->sync;
+ stats->foff = fdmdv->foff;
+ stats->rx_timing = fdmdv->rx_timing;
+ stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */
+
+#ifndef __EMBEDDED__
+ stats->nr = 1;
+ for(int c=0; c<fdmdv->Nc+1; c++) {
+ stats->rx_symbols[0][c] = fdmdv->phase_difference[c];
+ }
+#endif
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_8_to_16()
+ AUTHOR......: David Rowe
+ DATE CREATED: 9 May 2012
+
+ Changes the sample rate of a signal from 8 to 16 kHz. Support function for
+ SM1000.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_8_to_16(float out16k[], float in8k[], int n8k)
+{
+ int i,k,l;
+ float acc;
+
+ /* this version unrolled for specific FDMDV_OS */
+
+ assert(FDMDV_OS == 2);
+
+ for(i=0; i<n8k; i++) {
+ acc = 0.0;
+ for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
+ acc += fdmdv_os_filter[k]*in8k[i-l];
+ out16k[i*FDMDV_OS] = FDMDV_OS*acc;
+
+ acc = 0.0;
+ for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
+ acc += fdmdv_os_filter[k]*in8k[i-l];
+ out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
+ }
+
+ /* update filter memory */
+
+ for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
+ in8k[i] = in8k[i + n8k];
+
+}
+
+void fdmdv_8_to_16_short(short out16k[], short in8k[], int n8k)
+{
+ int i,k,l;
+ float acc;
+
+ /* this version unrolled for specific FDMDV_OS */
+
+ assert(FDMDV_OS == 2);
+
+ for(i=0; i<n8k; i++) {
+ acc = 0.0;
+ for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
+ acc += fdmdv_os_filter[k]*(float)in8k[i-l];
+ out16k[i*FDMDV_OS] = FDMDV_OS*acc;
+
+ acc = 0.0;
+ for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
+ acc += fdmdv_os_filter[k]*(float)in8k[i-l];
+ out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
+ }
+
+ /* update filter memory */
+
+ for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
+ in8k[i] = in8k[i + n8k];
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_16_to_8()
+ AUTHOR......: David Rowe
+ DATE CREATED: 9 May 2012
+
+ Changes the sample rate of a signal from 16 to 8 kHz.
+
+ n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n
+ samples at the 16 kHz rate. As above however a memory of
+ FDMDV_OS_TAPS samples is reqd for in16k[] (see t16_8.c unit test as example).
+
+ Low pass filter the 16 kHz signal at 4 kHz using the same filter as
+ the upsampler, then just output every FDMDV_OS-th filtered sample.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_16_to_8(float out8k[], float in16k[], int n)
+{
+ float acc;
+ int i,j,k;
+
+ for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
+ acc = 0.0;
+ for(j=0; j<FDMDV_OS_TAPS_16K; j++)
+ acc += fdmdv_os_filter[j]*in16k[i-j];
+ out8k[k] = acc;
+ }
+
+ /* update filter memory */
+
+ for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
+ in16k[i] = in16k[i + n*FDMDV_OS];
+}
+
+void fdmdv_16_to_8_short(short out8k[], short in16k[], int n)
+{
+ float acc;
+ int i,j,k;
+
+ for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
+ acc = 0.0;
+ for(j=0; j<FDMDV_OS_TAPS_16K; j++)
+ acc += fdmdv_os_filter[j]*(float)in16k[i-j];
+ out8k[k] = acc;
+ }
+
+ /* update filter memory */
+
+ for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
+ in16k[i] = in16k[i + n*FDMDV_OS];
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_8_to_48()
+ AUTHOR......: David Rowe
+ DATE CREATED: 9 May 2012
+
+ Changes the sample rate of a signal from 8 to 48 kHz.
+
+ n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n samples
+ at the 48 kHz rate. A memory of FDMDV_OS_TAPS_48/FDMDV_OS samples is reqd for
+ in8k[] (see t48_8.c unit test as example).
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_8_to_48(float out48k[], float in8k[], int n)
+{
+ int i,j,k,l;
+
+ for(i=0; i<n; i++) {
+ for(j=0; j<FDMDV_OS_48; j++) {
+ out48k[i*FDMDV_OS_48+j] = 0.0;
+ for(k=0,l=0; k<FDMDV_OS_TAPS_48K; k+=FDMDV_OS_48,l++)
+ out48k[i*FDMDV_OS_48+j] += fdmdv_os_filter48[k+j]*in8k[i-l];
+ out48k[i*FDMDV_OS_48+j] *= FDMDV_OS_48;
+
+ }
+ }
+
+ /* update filter memory */
+
+ for(i=-FDMDV_OS_TAPS_48_8K; i<0; i++)
+ in8k[i] = in8k[i + n];
+}
+
+void fdmdv_8_to_48_short(short out48k[], short in8k[], int n)
+{
+ int i,j,k,l;
+ float acc;
+
+ for(i=0; i<n; i++) {
+ for(j=0; j<FDMDV_OS_48; j++) {
+ acc = 0.0;
+ for(k=0,l=0; k<FDMDV_OS_TAPS_48K; k+=FDMDV_OS_48,l++)
+ acc += fdmdv_os_filter48[k+j]*in8k[i-l];
+ out48k[i*FDMDV_OS_48+j] = acc*FDMDV_OS_48;
+ }
+ }
+
+ /* update filter memory */
+
+ for(i=-FDMDV_OS_TAPS_48_8K; i<0; i++)
+ in8k[i] = in8k[i + n];
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_48_to_8()
+ AUTHOR......: David Rowe
+ DATE CREATED: 9 May 2012
+
+ Changes the sample rate of a signal from 48 to 8 kHz.
+
+ n is the number of samples at the 8 kHz rate, there are FDMDV_OS_48*n
+ samples at the 48 kHz rate. As above however a memory of
+ FDMDV_OS_TAPS_48 samples is reqd for in48k[] (see t48_8.c unit test as example).
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_48_to_8(float out8k[], float in48k[], int n)
+{
+ int i,j;
+
+ for(i=0; i<n; i++) {
+ out8k[i] = 0.0;
+ for(j=0; j<FDMDV_OS_TAPS_48K; j++)
+ out8k[i] += fdmdv_os_filter48[j]*in48k[i*FDMDV_OS_48-j];
+ }
+
+ /* update filter memory */
+
+ for(i=-FDMDV_OS_TAPS_48K; i<0; i++)
+ in48k[i] = in48k[i + n*FDMDV_OS_48];
+}
+
+void fdmdv_48_to_8_short(short out8k[], short in48k[], int n)
+{
+ int i,j;
+ float acc;
+
+ for(i=0; i<n; i++) {
+ acc = 0.0;
+ for(j=0; j<FDMDV_OS_TAPS_48K; j++)
+ acc += fdmdv_os_filter48[j]*in48k[i*FDMDV_OS_48-j];
+ out8k[i] = acc;
+ }
+
+ /* update filter memory */
+
+ for(i=-FDMDV_OS_TAPS_48K; i<0; i++)
+ in48k[i] = in48k[i + n*FDMDV_OS_48];
+}
+
+/*---------------------------------------------------------------------------*\
+
+ Function used during development to test if magnitude of digital
+ oscillators was drifting. It was!
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_dump_osc_mags(struct FDMDV *f)
+{
+ int i;
+
+ fprintf(stderr, "phase_tx[]:\n");
+ for(i=0; i<=f->Nc; i++)
+ fprintf(stderr," %1.3f", (double)cabsolute(f->phase_tx[i]));
+ fprintf(stderr,"\nfreq[]:\n");
+ for(i=0; i<=f->Nc; i++)
+ fprintf(stderr," %1.3f", (double)cabsolute(f->freq[i]));
+ fprintf(stderr,"\nfoff_phase_rect: %1.3f", (double)cabsolute(f->foff_phase_rect));
+ fprintf(stderr,"\nphase_rx[]:\n");
+ for(i=0; i<=f->Nc; i++)
+ fprintf(stderr," %1.3f", (double)cabsolute(f->phase_rx[i]));
+ fprintf(stderr, "\n\n");
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: randn()
+ AUTHOR......: David Rowe
+ DATE CREATED: 2 August 2014
+
+ Simple approximation to normal (gaussian) random number generator
+ with 0 mean and unit variance.
+
+\*---------------------------------------------------------------------------*/
+
+#define RANDN_IT 12 /* This magic number of iterations gives us a
+ unit variance. I think because var =
+ (b-a)^2/12 for one uniform random variable, so
+ for a sum of n random variables it's
+ n(b-a)^2/12, or for b=1, a = 0, n=12, we get
+ var = 12(1-0)^2/12 = 1 */
+
+static float randn() {
+ int i;
+ float rn = 0.0;
+
+ for(i=0; i<RANDN_IT; i++)
+ rn += (float)rand()/RAND_MAX;
+
+ rn -= (float)RANDN_IT/2.0;
+ return rn;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_simulate_channel()
+ AUTHOR......: David Rowe
+ DATE CREATED: 10 July 2014
+
+ Simple channel simulation function to aid in testing. Target SNR
+ uses noise measured in a 3 kHz bandwidth.
+
+ Doesn't use fdmdv states so can be called from anywhere, e.g. non
+ fdmdv applications.
+
+ TODO: Measured SNR is coming out a few dB higher than target_snr, this
+ needs to be fixed.
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_simulate_channel(float *sig_pwr_av, COMP samples[], int nin, float target_snr)
+{
+ float sig_pwr, target_snr_linear, noise_pwr, noise_pwr_1Hz, noise_pwr_4000Hz, noise_gain;
+ int i;
+
+ /* prevent NAN when we divide by nin below */
+ if (nin == 0) return;
+
+ /* estimate signal power */
+
+ sig_pwr = 0.0;
+ for(i=0; i<nin; i++)
+ sig_pwr += samples[i].real*samples[i].real + samples[i].imag*samples[i].imag;
+
+ sig_pwr /= nin;
+
+ *sig_pwr_av = 0.9**sig_pwr_av + 0.1*sig_pwr;
+
+ /* det noise to meet target SNR */
+
+ target_snr_linear = POW10F(target_snr/10.0);
+ noise_pwr = *sig_pwr_av/target_snr_linear; /* noise pwr in a 3000 Hz BW */
+ noise_pwr_1Hz = noise_pwr/3000.0; /* noise pwr in a 1 Hz bandwidth */
+ noise_pwr_4000Hz = noise_pwr_1Hz*4000.0; /* noise pwr in a 4000 Hz BW, which
+ due to fs=8000 Hz in our simulation noise BW */
+
+ noise_gain = sqrtf(0.5*noise_pwr_4000Hz); /* split noise pwr between real and imag sides */
+
+ for(i=0; i<nin; i++) {
+ samples[i].real += noise_gain*randn();
+ samples[i].imag += noise_gain*randn();
+ }
+ /*
+ fprintf(stderr, "sig_pwr: %f f->sig_pwr_av: %e target_snr_linear: %f noise_pwr_4000Hz: %e noise_gain: %e\n",
+ sig_pwr, *sig_pwr_av, target_snr_linear, noise_pwr_4000Hz, noise_gain);
+ */
+}