aboutsummaryrefslogtreecommitdiff
path: root/src/ofdm.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/ofdm.c')
-rw-r--r--src/ofdm.c2628
1 files changed, 2628 insertions, 0 deletions
diff --git a/src/ofdm.c b/src/ofdm.c
new file mode 100644
index 0000000..552196c
--- /dev/null
+++ b/src/ofdm.c
@@ -0,0 +1,2628 @@
+/*---------------------------------------------------------------------------*\
+
+ FILE........: ofdm.c
+ AUTHORS.....: David Rowe & Steve Sampson
+ DATE CREATED: June 2017
+
+ A Library of functions that implement a PSK OFDM modem, C port of
+ the Octave functions in ofdm_lib.m
+
+\*---------------------------------------------------------------------------*/
+
+/*
+ Copyright (C) 2017-2020 David Rowe
+
+ All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License version 2.1, as
+ published by the Free Software Foundation. This program is
+ distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <string.h>
+#include <math.h>
+#include <assert.h>
+#include <complex.h>
+
+#include "comp.h"
+#include "ofdm_internal.h"
+#include "codec2_ofdm.h"
+#include "filter.h"
+#include "wval.h"
+#include "debug_alloc.h"
+#include "machdep.h"
+
+#ifdef __EMBEDDED__
+#include "codec2_math.h"
+#endif /* __EMBEDDED__ */
+
+/* Static Prototypes */
+
+static float cnormf(complex float);
+static void allocate_tx_bpf(struct OFDM *);
+static void deallocate_tx_bpf(struct OFDM *);
+static float find_carrier_centre(struct OFDM *ofdm);
+static void allocate_rx_bpf(struct OFDM *);
+static void deallocate_rx_bpf(struct OFDM *);
+static void dft(struct OFDM *, complex float *, complex float *);
+static void idft(struct OFDM *, complex float *, complex float *);
+static complex float vector_sum(complex float *, int);
+static int est_timing(struct OFDM *, complex float *, int, int, float *, int *, int);
+static float est_freq_offset_pilot_corr(struct OFDM *, complex float *, int, int);
+static int ofdm_sync_search_core(struct OFDM *);
+static void ofdm_demod_core(struct OFDM *, int *);
+
+/* Defines */
+
+#define max( a, b ) ( ((a) > (b)) ? (a) : (b) )
+#define min( a, b ) ( ((a) < (b)) ? (a) : (b) )
+
+/*
+ * QPSK Quadrant bit-pair values - Gray Coded
+ */
+static const complex float qpsk[] = {
+ 1.0f + 0.0f * I,
+ 0.0f + 1.0f * I,
+ 0.0f - 1.0f * I,
+ -1.0f + 0.0f * I
+};
+
+static const complex float qam16[] = {
+ 1.0f + 1.0f * I,
+ 1.0f + 3.0f * I,
+ 3.0f + 1.0f * I,
+ 3.0f + 3.0f * I,
+ 1.0f - 1.0f * I,
+ 1.0f - 3.0f * I,
+ 3.0f - 1.0f * I,
+ 3.0f - 3.0f * I,
+ -1.0f + 1.0f * I,
+ -1.0f + 3.0f * I,
+ -3.0f + 1.0f * I,
+ -3.0f + 3.0f * I,
+ -1.0f - 1.0f * I,
+ -1.0f - 3.0f * I,
+ -3.0f - 1.0f * I,
+ -3.0f - 3.0f * I
+};
+
+/*
+ * These pilots are compatible with Octave version
+ */
+static const int8_t pilotvalues[] = {
+ -1,-1, 1, 1,-1,-1,-1, 1,
+ -1, 1,-1, 1, 1, 1, 1, 1,
+ 1, 1, 1,-1,-1, 1,-1, 1,
+ -1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1,-1, 1, 1, 1, 1,
+ 1,-1,-1,-1,-1,-1,-1, 1,
+ -1, 1,-1, 1,-1,-1, 1,-1,
+ 1, 1, 1, 1,-1, 1,-1, 1
+};
+
+/* Local Functions ----------------------------------------------------------*/
+
+static float cnormf(complex float val) {
+ float realf = crealf(val);
+ float imagf = cimagf(val);
+
+ return realf * realf + imagf * imagf;
+}
+
+/*
+ * Gray coded QPSK modulation function
+ */
+complex float qpsk_mod(int *bits) {
+ return qpsk[(bits[1] << 1) | bits[0]];
+}
+
+/*
+ * Gray coded QPSK demodulation function
+ *
+ * 01 | 00
+ * ---+---
+ * 11 | 10
+ */
+void qpsk_demod(complex float symbol, int *bits) {
+ complex float rotate = symbol * cmplx(ROT45);
+
+ bits[0] = crealf(rotate) <= 0.0f;
+ bits[1] = cimagf(rotate) <= 0.0f;
+}
+
+complex float qam16_mod(int *bits) {
+ return qam16[
+ (bits[3] << 3) | (bits[2] << 2) |
+ (bits[1] << 1) | bits[0]
+ ];
+}
+
+void qam16_demod(complex float symbol, int *bits) {
+ float dist[16];
+ int i;
+
+ for (i = 0; i < 16; i++) {
+ dist[i] = cnormf(symbol - qam16[i]);
+ }
+
+ int row = 0;
+ float mdist = 10000.0f;
+
+ for (i = 0; i < 16; i++) {
+ if (dist[i] < mdist) {
+ mdist = dist[i];
+ row = i;
+ }
+ }
+
+ bits[0] = row & 1;
+ bits[1] = (row >> 1) & 1;
+ bits[2] = (row >> 2) & 1;
+ bits[3] = (row >> 3) & 1;
+}
+
+/*
+ * ------------
+ * ofdm_create
+ * ------------
+ *
+ * Returns OFDM data structure on success
+ * Return NULL on fail
+ *
+ * If you want the defaults, call this with config structure
+ * and the NC setting to 0. This will fill the structure with
+ * default values of the original OFDM modem.
+ */
+struct OFDM *ofdm_create(const struct OFDM_CONFIG *config) {
+ struct OFDM *ofdm;
+ float tval;
+ int i, j;
+
+ ofdm = (struct OFDM *) CALLOC(1, sizeof (struct OFDM));
+ assert(ofdm != NULL);
+
+ if (config == NULL) {
+ /* Fill in default values */
+
+ strcpy(ofdm->mode, "700D");
+ ofdm->nc = 17; /* Number of carriers */
+ ofdm->np = 1;
+ ofdm->ns = 8; /* Number of Symbols per modem frame */
+ ofdm->ts = 0.018f;
+ ofdm->rs = (1.0f / ofdm->ts); /* Modulation Symbol Rate */
+ ofdm->tcp = .002f; /* Cyclic Prefix duration */
+ ofdm->tx_centre = 1500.0f; /* TX Carrier Frequency */
+ ofdm->rx_centre = 1500.0f; /* RX Carrier Frequency */
+ ofdm->fs = 8000.0f; /* Sample rate */
+ ofdm->ntxtbits = 4;
+ ofdm->bps = 2; /* Bits per Symbol */
+ ofdm->nuwbits = 5 * ofdm->bps; /* default is 5 symbols of Unique Word bits */
+ ofdm->bad_uw_errors = 3;
+ ofdm->ftwindowwidth = 32;
+ ofdm->timing_mx_thresh = 0.30f;
+ ofdm->state_machine = "voice1";
+ ofdm->edge_pilots = 1;
+ ofdm->codename = "HRA_112_112";
+ ofdm->amp_est_mode = 0;
+ ofdm->tx_bpf_en = true;
+ ofdm->rx_bpf_en = false;
+ ofdm->amp_scale = 245E3;
+ ofdm->clip_gain1 = 2.0;
+ ofdm->clip_gain2 = 0.9;
+ ofdm->clip_en = false;
+ ofdm->foff_limiter = false;
+ ofdm->data_mode = "";
+ ofdm->fmin = -50.0; /* frequency minimum for ofdm acquisition range */
+ ofdm->fmax = 50.0; /* frequency maximum for ofdm acquisition range */
+ memset(ofdm->tx_uw, 0, ofdm->nuwbits);
+ } else {
+ /* Use the users values */
+
+
+ strcpy(ofdm->mode, config->mode);
+ ofdm->nc = config->nc; /* Number of carriers */
+ ofdm->np = config->np; /* Number of modem Frames per Packet */
+ ofdm->ns = config->ns; /* Number of Symbol frames */
+ ofdm->bps = config->bps; /* Bits per Symbol */
+ ofdm->ts = config->ts;
+ ofdm->tcp = config->tcp; /* Cyclic Prefix duration */
+ ofdm->tx_centre = config->tx_centre; /* TX Centre Audio Frequency */
+ ofdm->rx_centre = config->rx_centre; /* RX Centre Audio Frequency */
+ ofdm->fs = config->fs; /* Sample Frequency */
+ ofdm->rs = config->rs; /* Symbol Rate */
+ ofdm->ntxtbits = config->txtbits;
+ ofdm->nuwbits = config->nuwbits;
+ ofdm->bad_uw_errors = config->bad_uw_errors;
+ ofdm->ftwindowwidth = config->ftwindowwidth;
+ ofdm->timing_mx_thresh = config->timing_mx_thresh;
+ ofdm->state_machine = config->state_machine;
+ ofdm->edge_pilots = config->edge_pilots;
+ ofdm->codename = config->codename;
+ ofdm->amp_est_mode = config->amp_est_mode;
+ ofdm->tx_bpf_en = config->tx_bpf_en;
+ ofdm->rx_bpf_en = config->rx_bpf_en;
+ ofdm->foff_limiter = config->foff_limiter;
+ ofdm->amp_scale = config->amp_scale;
+ ofdm->clip_gain1 = config->clip_gain1;
+ ofdm->clip_gain2 = config->clip_gain2;
+ ofdm->clip_en = config->clip_en;
+ memcpy(ofdm->tx_uw, config->tx_uw, ofdm->nuwbits);
+ ofdm->data_mode = config->data_mode;
+ ofdm->fmin = config->fmin; /* frequency minimum for ofdm acquisition range */
+ ofdm->fmax = config->fmax; /* frequency maximum for ofdm acquisition range */
+
+ }
+
+ ofdm->rs = (1.0f / ofdm->ts); /* Modulation Symbol Rate */
+ ofdm->m = (int) (ofdm->fs / ofdm->rs); /* 700D: 144 */
+ ofdm->ncp = (int) (ofdm->tcp * ofdm->fs); /* 700D: 16 */
+ ofdm->inv_m = (1.0f / (float) ofdm->m);
+
+ /* basic sanity checks */
+ assert((int)floorf(ofdm->fs / ofdm->rs) == ofdm->m);
+ assert(!strcmp(ofdm->state_machine, "voice1") ||
+ !strcmp(ofdm->state_machine, "data") ||
+ !strcmp(ofdm->state_machine, "voice2"));
+ assert(ofdm->nuwbits <= MAX_UW_BITS);
+
+ /* Copy constants into states */
+
+ strcpy(ofdm->config.mode, ofdm->mode);
+ ofdm->config.tx_centre = ofdm->tx_centre;
+ ofdm->config.rx_centre = ofdm->rx_centre;
+ ofdm->config.fs = ofdm->fs;
+ ofdm->config.rs = ofdm->rs;
+ ofdm->config.ts = ofdm->ts;
+ ofdm->config.tcp = ofdm->tcp;
+ ofdm->config.timing_mx_thresh = ofdm->timing_mx_thresh;
+ ofdm->config.nc = ofdm->nc;
+ ofdm->config.ns = ofdm->ns;
+ ofdm->config.np = ofdm->np;
+ ofdm->config.bps = ofdm->bps;
+ ofdm->config.nuwbits = ofdm->nuwbits;
+ ofdm->config.txtbits = ofdm->ntxtbits;
+ ofdm->config.bad_uw_errors = ofdm->bad_uw_errors;
+ ofdm->config.ftwindowwidth = ofdm->ftwindowwidth;
+ ofdm->config.state_machine = ofdm->state_machine;
+ ofdm->config.edge_pilots = ofdm->edge_pilots;
+ ofdm->config.codename = ofdm->codename;
+ ofdm->config.amp_est_mode = ofdm->amp_est_mode;
+ ofdm->config.tx_bpf_en = ofdm->tx_bpf_en;
+ ofdm->config.rx_bpf_en = ofdm->rx_bpf_en;
+ ofdm->config.foff_limiter = ofdm->foff_limiter;
+ ofdm->config.amp_scale = ofdm->amp_scale;
+ ofdm->config.clip_gain1 = ofdm->clip_gain1;
+ ofdm->config.clip_gain2 = ofdm->clip_gain2;
+ ofdm->config.clip_en = ofdm->clip_en;
+ memcpy(ofdm->config.tx_uw, ofdm->tx_uw, ofdm->nuwbits);
+ ofdm->config.data_mode = ofdm->data_mode;
+ ofdm->config.fmin = ofdm->fmin;
+ ofdm->config.fmax = ofdm->fmax;
+
+
+ /* Calculate sizes from config param */
+
+ ofdm->bitsperframe = (ofdm->ns - 1) * (ofdm->nc * ofdm->bps); // 238 for nc = 17
+ ofdm->bitsperpacket = ofdm->np * ofdm->bitsperframe;
+ ofdm->tpacket = (float)(ofdm->np * ofdm->ns) * (ofdm->tcp + ofdm->ts); /* time for one packet */
+ ofdm->rowsperframe = ofdm->bitsperframe / (ofdm->nc * ofdm->bps);
+ ofdm->samplespersymbol = (ofdm->m + ofdm->ncp);
+ ofdm->samplesperframe = ofdm->ns * ofdm->samplespersymbol;
+ if (*ofdm->data_mode != 0)
+ // in burst data modes we skip ahead one frame to jump over preamble
+ ofdm->max_samplesperframe = 2*ofdm->samplesperframe;
+ else
+ ofdm->max_samplesperframe = ofdm->samplesperframe + (ofdm->samplespersymbol / 4);
+ /* extra storage at start of rxbuf to allow us to step back in time */
+ if (strlen(ofdm->data_mode))
+ ofdm->nrxbufhistory = (ofdm->np+2)*ofdm->samplesperframe;
+ else
+ ofdm->nrxbufhistory = 0;
+ ofdm->rxbufst = ofdm->nrxbufhistory;
+ ofdm->nrxbufmin = 3*ofdm->samplesperframe + 3*ofdm->samplespersymbol;
+ ofdm->nrxbuf = ofdm->nrxbufhistory + ofdm->nrxbufmin;
+
+ ofdm->pilot_samples = (complex float *) MALLOC(sizeof (complex float) * ofdm->samplespersymbol);
+ assert(ofdm->pilot_samples != NULL);
+
+ ofdm->rxbuf = (complex float *) MALLOC(sizeof (complex float) * ofdm->nrxbuf);
+ assert(ofdm->rxbuf != NULL);
+ for(int i=0; i<ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0;
+
+ ofdm->pilots = (complex float *) MALLOC(sizeof (complex float) * (ofdm->nc + 2));
+ assert(ofdm->pilots != NULL);
+
+ /*
+ * rx_sym is a 2D array of variable size
+ *
+ * allocate rx_sym row storage. It is a pointer to a pointer
+ */
+ ofdm->rx_sym = MALLOC(sizeof (complex float) * (ofdm->ns + 3));
+ assert(ofdm->rx_sym != NULL);
+
+ /* allocate rx_sym column storage */
+
+ for (i = 0; i < (ofdm->ns + 3); i++) {
+ ofdm->rx_sym[i] = (complex float *) MALLOC(sizeof(complex float) * (ofdm->nc + 2));
+ assert(ofdm->rx_sym[i] != NULL);
+ }
+
+ /* The rest of these are 1D arrays of variable size */
+
+ ofdm->rx_np = MALLOC(sizeof (complex float) * (ofdm->rowsperframe * ofdm->nc));
+ assert(ofdm->rx_np != NULL);
+
+ ofdm->rx_amp = MALLOC(sizeof (float) * (ofdm->rowsperframe * ofdm->nc));
+ assert(ofdm->rx_amp != NULL);
+
+ ofdm->aphase_est_pilot_log = MALLOC(sizeof (float) * (ofdm->rowsperframe * ofdm->nc));
+ assert(ofdm->aphase_est_pilot_log != NULL);
+
+ /* store complex BPSK pilot symbols */
+
+ assert(sizeof (pilotvalues) >= (ofdm->nc + 2) * sizeof (int8_t));
+
+ /* There are only 64 pilot values available */
+
+ for (i = 0; i < (ofdm->nc + 2); i++) {
+ ofdm->pilots[i] = ((float) pilotvalues[i]) + 0.0f * I;
+ }
+ if (ofdm->edge_pilots == 0) {
+ ofdm->pilots[0] = ofdm->pilots[ofdm->nc + 1] = 0.0f;
+ }
+ /* carrier tables for up and down conversion */
+
+ ofdm->doc = (TAU / (ofdm->fs / ofdm->rs));
+ tval = ((float) ofdm->nc / 2.0f);
+ ofdm->tx_nlower = roundf((ofdm->tx_centre / ofdm->rs) - tval) - 1.0f;
+ ofdm->rx_nlower = roundf((ofdm->rx_centre / ofdm->rs) - tval) - 1.0f;
+
+ /* Tx and Rx band pass filters */
+ ofdm->tx_bpf = NULL;
+ if (ofdm->tx_bpf_en)
+ allocate_tx_bpf(ofdm);
+ ofdm->rx_bpf = NULL;
+ if (ofdm->rx_bpf_en)
+ allocate_rx_bpf(ofdm);
+
+ for (i = 0; i < ofdm->nrxbuf; i++) {
+ ofdm->rxbuf[i] = 0.0f;
+ }
+
+ for (i = 0; i < (ofdm->ns + 3); i++) {
+ for (j = 0; j < (ofdm->nc + 2); j++) {
+ ofdm->rx_sym[i][j] = 0.0f;
+ }
+ }
+
+ for (i = 0; i < ofdm->rowsperframe * ofdm->nc; i++) {
+ ofdm->rx_np[i] = 0.0f;
+ }
+
+ for (i = 0; i < ofdm->rowsperframe; i++) {
+ for (j = 0; j < ofdm->nc; j++) {
+ ofdm->aphase_est_pilot_log[ofdm->nc * i + j] = 0.0f;
+ ofdm->rx_amp[ofdm->nc * i + j] = 0.0f;
+ }
+ }
+
+ /* default settings of options and states */
+
+ ofdm->verbose = 0;
+ ofdm->timing_en = true;
+ ofdm->foff_est_en = true;
+ ofdm->phase_est_en = true;
+ ofdm->phase_est_bandwidth = high_bw;
+ ofdm->phase_est_bandwidth_mode = AUTO_PHASE_EST;
+ ofdm->packetsperburst = 0; // default: never lose syn in raw data mode
+
+ ofdm->coarse_foff_est_hz = 0.0f;
+ ofdm->foff_est_gain = 0.1f;
+ ofdm->foff_est_hz = 0.0f;
+ ofdm->sample_point = 0;
+ ofdm->timing_est = 0;
+ ofdm->timing_valid = 0;
+ ofdm->timing_mx = 0.0f;
+ ofdm->nin = ofdm->samplesperframe;
+ ofdm->mean_amp = 0.0f;
+ ofdm->foff_metric = 0.0f;
+
+ ofdm->fmin = -50.0f;
+ ofdm->fmax = 50.0f;
+
+ /*
+ * Unique Word symbol placement. Note we need to group the UW
+ * bits so they fit into symbols. The LDPC decoder works on
+ * symbols so we can't break up any symbols into UW/payload bits.
+ */
+ ofdm->uw_ind = MALLOC(sizeof (int) * ofdm->nuwbits);
+ assert(ofdm->uw_ind != NULL);
+
+ ofdm->uw_ind_sym = MALLOC(sizeof (int) * (ofdm->nuwbits / ofdm->bps));
+ assert(ofdm->uw_ind_sym != NULL);
+
+ /*
+ * The Unique Word is placed in different indexes based on
+ * the number of carriers requested.
+ */
+ int nuwsyms = ofdm->nuwbits / ofdm->bps;
+ int Ndatasymsperframe = (ofdm->ns-1)*ofdm->nc;
+ int uw_step = ofdm->nc + 1; // default step size
+ int last_sym = floorf(nuwsyms*uw_step/ofdm->bps);
+ if (last_sym >= ofdm->np*Ndatasymsperframe)
+ uw_step = ofdm->nc - 1; // try a different step
+ last_sym = floorf(nuwsyms*uw_step/ofdm->bps);
+ assert(last_sym < ofdm->np*Ndatasymsperframe);// bail if we still can't fit them all
+
+ for (i = 0, j = 0; i < nuwsyms; i++, j += ofdm->bps) {
+ int val = floorf((i + 1) * uw_step / ofdm->bps);
+
+ ofdm->uw_ind_sym[i] = val; // symbol index
+
+ for (int b = 0; b < ofdm->bps ; b++) {
+ ofdm->uw_ind[j + b] = (val * ofdm->bps) + b;
+ }
+ }
+
+ // work out how many frames UW is spread over
+ int symsperframe = ofdm->bitsperframe / ofdm->bps;
+ ofdm->nuwframes = (int) ceilf((float)(ofdm->uw_ind_sym[nuwsyms-1]+1)/symsperframe);
+
+ ofdm->tx_uw_syms = MALLOC(sizeof (complex float) * (ofdm->nuwbits / ofdm->bps));
+ assert(ofdm->tx_uw_syms != NULL);
+
+ assert(ofdm->bps == 2); // TODO generalise
+ for (int s = 0; s < (ofdm->nuwbits / ofdm->bps); s++) {
+ int dibit[2];
+ dibit[1] = ofdm->tx_uw[2*s];
+ dibit[0] = ofdm->tx_uw[2*s+1];
+ ofdm->tx_uw_syms[s] = qpsk_mod(dibit);
+ }
+
+ /* sync state machine */
+
+ ofdm->sync_state = search;
+ ofdm->last_sync_state = search;
+
+ ofdm->uw_errors = 0;
+ ofdm->sync_counter = 0;
+ ofdm->frame_count = 0;
+ ofdm->sync_start = false;
+ ofdm->sync_end = false;
+ ofdm->sync_mode = autosync;
+ ofdm->modem_frame = 0;
+
+ /* create the OFDM pilot time-domain waveform */
+
+ complex float *temp = MALLOC(sizeof (complex float) * ofdm->m);
+ assert(temp != NULL);
+
+ idft(ofdm, temp, ofdm->pilots);
+
+ /*
+ * pilot_samples is 160 samples, but timing and freq offset est
+ * were found by experiment to work better without a cyclic
+ * prefix, so we uses zeroes instead.
+ */
+
+ /* zero out Cyclic Prefix (CP) time-domain values */
+
+ for (i = 0; i < ofdm->ncp; i++) {
+ ofdm->pilot_samples[i] = 0.0f;
+ }
+
+ /* Now copy the whole thing after the above */
+
+ for (i = ofdm->ncp, j = 0; j < ofdm->m; i++, j++) {
+ ofdm->pilot_samples[i] = temp[j];
+ }
+
+ FREE(temp);
+
+ /* calculate constant used to normalise timing correlation maximum */
+ float acc = 0.0f;
+ for (i = 0; i < ofdm->samplespersymbol; i++) {
+ acc += cnormf(ofdm->pilot_samples[i]);
+ }
+
+ ofdm->timing_norm = ofdm->samplespersymbol * acc;
+ ofdm->clock_offset_counter = 0;
+ ofdm->dpsk_en = false;
+
+ if (strlen(ofdm->data_mode)) {
+ ofdm->tx_preamble = (COMP*)malloc(sizeof(COMP)*ofdm->samplesperframe);
+ assert(ofdm->tx_preamble != NULL);
+ ofdm_generate_preamble(ofdm, ofdm->tx_preamble, 2);
+ ofdm->tx_postamble = (COMP*)malloc(sizeof(COMP)*ofdm->samplesperframe);
+ assert(ofdm->tx_postamble != NULL);
+ ofdm_generate_preamble(ofdm, ofdm->tx_postamble, 3);
+ }
+ ofdm->postambledetectoren = !strcmp(ofdm->data_mode,"burst");
+
+ return ofdm; /* Success */
+}
+
+static void allocate_tx_bpf(struct OFDM *ofdm) {
+ ofdm->tx_bpf = MALLOC(sizeof(struct quisk_cfFilter));
+ assert(ofdm->tx_bpf != NULL);
+
+ /* Transmit bandpass filter; complex coefficients, center frequency */
+
+ if (!strcmp(ofdm->mode, "700D")) {
+ quisk_filt_cfInit(ofdm->tx_bpf, filtP650S900, sizeof (filtP650S900) / sizeof (float));
+ quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs);
+ }
+ else if (!strcmp(ofdm->mode, "700E") || !strcmp(ofdm->mode, "2020") || !strcmp(ofdm->mode, "datac1")) {
+ quisk_filt_cfInit(ofdm->tx_bpf, filtP900S1100, sizeof (filtP900S1100) / sizeof (float));
+ quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs);
+ }
+ else if (!strcmp(ofdm->mode, "2020B") || !strcmp(ofdm->mode, "2020C")) {
+ quisk_filt_cfInit(ofdm->tx_bpf, filtP1100S1300, sizeof (filtP1100S1300) / sizeof (float));
+ quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs);
+ }
+ else if (!strcmp(ofdm->mode, "datac0") || !strcmp(ofdm->mode, "datac3")) {
+ quisk_filt_cfInit(ofdm->tx_bpf, filtP400S600, sizeof (filtP400S600) / sizeof (float));
+ quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs);
+ }
+ else if (!strcmp(ofdm->mode, "datac4") || !strcmp(ofdm->mode, "datac13")) {
+ quisk_filt_cfInit(ofdm->tx_bpf, filtP200S400, sizeof (filtP200S400) / sizeof (float));
+ // centre the filter on the mean carrier freq, allows a narrower filter to be used
+ float tx_centre = find_carrier_centre(ofdm);
+ quisk_cfTune(ofdm->tx_bpf, tx_centre / ofdm->fs);
+ }
+ else assert(0);
+}
+
+static void deallocate_tx_bpf(struct OFDM *ofdm) {
+ assert(ofdm->tx_bpf != NULL);
+ quisk_filt_destroy(ofdm->tx_bpf);
+ FREE(ofdm->tx_bpf);
+ ofdm->tx_bpf = NULL;
+}
+
+static float find_carrier_centre(struct OFDM *ofdm) {
+ float rx_centre = 0.0;
+ for(int c=0; c<ofdm->nc+2; c++)
+ rx_centre += (ofdm->rx_nlower + c) * ofdm->doc;
+ return (ofdm->fs/TAU)*rx_centre/(ofdm->nc+2);
+}
+
+static void allocate_rx_bpf(struct OFDM *ofdm) {
+ ofdm->rx_bpf = MALLOC(sizeof(struct quisk_cfFilter));
+ assert(ofdm->rx_bpf != NULL);
+
+ /* Receive bandpass filter; complex coefficients, center frequency */
+
+ if (!strcmp(ofdm->mode, "datac4") || !strcmp(ofdm->mode, "datac13")) {
+ quisk_filt_cfInit(ofdm->rx_bpf, filtP200S400, sizeof (filtP200S400) / sizeof (float));
+ // centre the filter on the mean carrier freq, allows a narrower filter to be used
+ float rx_centre = find_carrier_centre(ofdm);
+ //fprintf(stderr, " rx_centre: %f\n", rx_centre);
+ quisk_cfTune(ofdm->rx_bpf, rx_centre / ofdm->fs);
+ }
+ else assert(0);
+}
+
+static void deallocate_rx_bpf(struct OFDM *ofdm) {
+ assert(ofdm->rx_bpf != NULL);
+ quisk_filt_destroy(ofdm->rx_bpf);
+ FREE(ofdm->rx_bpf);
+ ofdm->rx_bpf = NULL;
+}
+
+void ofdm_destroy(struct OFDM *ofdm) {
+ int i;
+
+ if (strlen(ofdm->data_mode)) {
+ free(ofdm->tx_preamble);
+ free(ofdm->tx_postamble);
+ }
+ if (ofdm->tx_bpf) {
+ deallocate_tx_bpf(ofdm);
+ }
+ if (ofdm->rx_bpf) {
+ deallocate_rx_bpf(ofdm);
+ }
+
+ FREE(ofdm->pilot_samples);
+ FREE(ofdm->rxbuf);
+ FREE(ofdm->pilots);
+
+ for (i = 0; i < (ofdm->ns + 3); i++) { /* 2D array */
+ FREE(ofdm->rx_sym[i]);
+ }
+
+ FREE(ofdm->rx_sym);
+ FREE(ofdm->rx_np);
+ FREE(ofdm->rx_amp);
+ FREE(ofdm->aphase_est_pilot_log);
+ FREE(ofdm->tx_uw_syms);
+ FREE(ofdm->uw_ind);
+ FREE(ofdm->uw_ind_sym);
+ FREE(ofdm);
+}
+
+/*
+ * Convert frequency domain into time domain
+ *
+ * This algorithm was optimized for speed
+ */
+static void idft(struct OFDM *ofdm, complex float *result, complex float *vector) {
+ int row, col;
+
+ result[0] = 0.0f;
+
+ for (col = 0; col < (ofdm->nc + 2); col++) {
+ result[0] += vector[col]; // cexp(j0) == 1
+ }
+
+ result[0] *= ofdm->inv_m;
+
+ for (row = 1; row < ofdm->m; row++) {
+ complex float c = cmplx(ofdm->tx_nlower * ofdm->doc *row);
+ complex float delta = cmplx(ofdm->doc * row);
+
+ result[row] = 0.0f;
+
+ for (col = 0; col < (ofdm->nc + 2); col++) {
+ result[row] += (vector[col] * c);
+ c *= delta;
+ }
+
+ result[row] *= ofdm->inv_m;
+ }
+}
+
+/*
+ * Convert time domain into frequency domain
+ *
+ * This algorithm was optimized for speed
+ */
+static void dft(struct OFDM *ofdm, complex float *result, complex float *vector) {
+ int row, col;
+
+ for (col = 0; col < (ofdm->nc + 2); col++) {
+ result[col] = vector[0]; // conj(cexp(j0)) == 1
+ }
+
+ for (col = 0; col < (ofdm->nc + 2); col++) {
+ float tval = (ofdm->rx_nlower + col) * ofdm->doc;
+ complex float c = cmplxconj(tval);
+ complex float delta = c;
+
+ for (row = 1; row < ofdm->m; row++) {
+ result[col] += (vector[row] * c);
+ c *= delta;
+ }
+ }
+}
+
+static complex float vector_sum(complex float *a, int num_elements) {
+ complex float sum = 0.0f;
+ int i;
+
+ for (i = 0; i < num_elements; i++) {
+ sum += a[i];
+ }
+
+ return sum;
+}
+
+/* Determine if we can use vector ops below. Only for non-embedded platforms
+ as double can be significantly slower on those. */
+#ifndef __EMBEDDED__
+#if __GNUC__ > 4 || \
+ (__GNUC__ == 4 && (__GNUC_MINOR__ > 6 || \
+ (__GNUC_MINOR__ == 6 && \
+ __GNUC_PATCHLEVEL__ > 0)))
+#define USE_VECTOR_OPS 1
+#elif __clang_major__ > 3 || \
+ (__clang_minor__ == 3 && (__clang_minor__ > 7 || \
+ (__clang_minor__ == 7 && \
+ __clang_patchlevel__ > 0)))
+#define USE_VECTOR_OPS 1
+#endif
+#else
+#include "codec2_math.h"
+#endif /* __EMBEDDED__ */
+
+#if USE_VECTOR_OPS
+typedef float float4 __attribute__ ((vector_size (16)));
+#endif /* USE_VECTOR_OPS */
+
+static complex float ofdm_complex_dot_product(complex float *left, complex float *right, int numSamples)
+{
+ complex float result = 0;
+
+#if USE_VECTOR_OPS
+ float *leftPtr = (float*)left;
+ float *rightPtr = (float*)right;
+ float4 accumPos = { 0, 0, 0, 0 };
+ float4 accumNeg = { 0, 0, 0, 0 };
+ float4 accumImag = { 0, 0, 0, 0 };
+ float resultReal = 0;
+ float resultImag = 0;
+ int numBlocks = numSamples >> 1;
+ for (int i = 0; i < numBlocks; i++)
+ {
+ /* Lay out vectors as follows:
+ vec1 = rx[0].a, rx[0].b, rx[1].a, rx[1].b, ...
+ vec2 = mvec[0].c, mvec[0].d, mvec[1].c, mvec1[1].d, ... */
+ float4 vec1 = { leftPtr[0], leftPtr[1], leftPtr[2], leftPtr[3] };
+ float4 vec2 = { rightPtr[0], rightPtr[1], rightPtr[2], rightPtr[3] };
+
+ accumPos += vec1 * vec2;
+ accumNeg -= vec1 * vec2;
+
+ /* Lay out vec3 as { rx[0].b, rx[0].a, rx[1].b, rx[0].b, ... }.
+ Multiply vec3 by vec2 to get us bc, ad, bc, ad
+ and add to second accumulator. */
+ float4 vec3 = { leftPtr[1], leftPtr[0], leftPtr[3], leftPtr[2] };
+ accumImag += vec3 * vec2;
+
+ /* Shift pointers forward by 4 (2 complex floats). */
+ leftPtr += 4; rightPtr += 4;
+ }
+
+ /* dot product: (a + bi)(c + di) = (ac - bd) + i(bc + ad) */
+ resultReal = accumPos[0] + accumNeg[1] + accumPos[2] + accumNeg[3];
+ resultImag = accumImag[0] + accumImag[1] + accumImag[2] + accumImag[3];
+ result = resultReal + I * resultImag;
+
+ /* Add remaining values to corr that couldn't be vectorized above. */
+ for (int i = numBlocks << 1; i < numSamples; i++)
+ {
+ result += left[i] * right[i];
+ }
+#elif __EMBEDDED__
+ float resultReal = 0, resultImag = 0;
+ codec2_complex_dot_product_f32((COMP*)left, (COMP*)right, numSamples, &resultReal, &resultImag);
+ result = resultReal + I * resultImag;
+#else
+ for (int i = 0; i < numSamples; i++)
+ {
+ result += left[i] * right[i];
+ }
+#endif /* USE_VECTOR_OPS */
+
+ return result;
+}
+
+
+/*
+ * Correlates the OFDM pilot symbol samples with a window of received
+ * samples to determine the most likely timing offset. Combines two
+ * frames pilots so we need at least Nsamperframe+M+Ncp samples in rx.
+ *
+ * Can be used for acquisition (coarse timing), and fine timing.
+ *
+ * Breaks when freq offset approaches +/- symbol rate (e.g
+ * +/- 25 Hz for 700D).
+ */
+static int est_timing(struct OFDM *ofdm, complex float *rx, int length,
+ int fcoarse, float *timing_mx, int *timing_valid, int step) {
+ complex float corr_st, corr_en;
+ int Ncorr = length - (ofdm->samplesperframe + ofdm->samplespersymbol);
+ float corr[Ncorr];
+ int i, j;
+ float acc = 0.0f;
+
+ for (i = 0; i < length; i++) {
+ acc += cnormf(rx[i]);
+ }
+
+ float av_level = 1.0f/(2.0f * sqrtf(ofdm->timing_norm * acc / length) + 1E-12f);
+
+ /* precompute the freq shift multiplied by pilot samples outside of main loop */
+
+ PROFILE_VAR(wvecpilot);
+ PROFILE_SAMPLE(wvecpilot);
+
+ complex float wvec_pilot[ofdm->samplespersymbol];
+
+ switch(fcoarse) {
+ case -40:
+ for (j = 0; j < ofdm->samplespersymbol; j++)
+ wvec_pilot[j] = conjf(ofdm_wval[j]*ofdm->pilot_samples[j]);
+ break;
+ case 0:
+ for (j = 0; j < ofdm->samplespersymbol; j++)
+ wvec_pilot[j] = conjf(ofdm->pilot_samples[j]);
+ break;
+ case 40:
+ for (j = 0; j < ofdm->samplespersymbol; j++)
+ wvec_pilot[j] = ofdm_wval[j]*conjf(ofdm->pilot_samples[j]);
+ break;
+ default:
+ assert(0);
+ }
+
+ /* use of __REAL__ provides a speed in increase of 10ms/frame during acquisition, however complex
+ is fast enough for real time operation */
+
+#if defined(__EMBEDDED__) && defined(__REAL__)
+ float rx_real[length];
+ float wvec_pilot_real[ofdm->samplespersymbol];
+ float wvec_pilot_imag[ofdm->samplespersymbol];
+
+ for (i = 0; i < length; i++) {
+ rx_real[i] = crealf(rx[i]);
+ }
+
+ for (i = 0; i < ofdm->samplespersymbol; i++) {
+ wvec_pilot_real[i] = crealf(wvec_pilot[i]);
+ wvec_pilot_imag[i] = cimagf(wvec_pilot[i]);
+ }
+
+#endif
+ PROFILE_SAMPLE_AND_LOG2(wvecpilot, " wvecpilot");
+ PROFILE_VAR(corr_start);
+ PROFILE_SAMPLE(corr_start);
+
+ for (i = 0; i < Ncorr; i += step) {
+ corr_st = 0.0f;
+ corr_en = 0.0f;
+
+#ifdef __EMBEDDED__
+#ifdef __REAL__
+ float re,im;
+
+ codec2_dot_product_f32(&rx_real[i], wvec_pilot_real, ofdm->samplespersymbol, &re);
+ codec2_dot_product_f32(&rx_real[i], wvec_pilot_imag, ofdm->samplespersymbol, &im);
+ corr_st = re + im * I;
+
+ codec2_dot_product_f32(&rx_real[i+ ofdm->samplesperframe], wvec_pilot_real, ofdm->samplespersymbol, &re);
+ codec2_dot_product_f32(&rx_real[i+ ofdm->samplesperframe], wvec_pilot_imag, ofdm->samplespersymbol, &im);
+ corr_en = re + im * I;
+
+#else
+ float re,im;
+
+ codec2_complex_dot_product_f32((COMP*)&rx[i], (COMP*)wvec_pilot, ofdm->samplespersymbol, &re, &im);
+ corr_st = re + im * I;
+
+ codec2_complex_dot_product_f32((COMP*)&rx[i+ ofdm->samplesperframe], (COMP*)wvec_pilot, ofdm->samplespersymbol, &re, &im);
+ corr_en = re + im * I;
+#endif
+#else
+ corr_st = ofdm_complex_dot_product(&rx[i], wvec_pilot, ofdm->samplespersymbol);
+ corr_en = ofdm_complex_dot_product(&rx[i + ofdm->samplesperframe], wvec_pilot, ofdm->samplespersymbol);
+#endif // __EMBEDDED__
+ corr[i] = (cabsf(corr_st) + cabsf(corr_en)) * av_level;
+ }
+
+ PROFILE_SAMPLE_AND_LOG2(corr_start, " corr");
+
+ /* find the max magnitude and its index */
+
+ int timing_est = 0;
+ *timing_mx = 0.0f;
+
+ for (i = 0; i < Ncorr; i+=step) {
+ if (corr[i] > *timing_mx) {
+ *timing_mx = corr[i];
+ timing_est = i;
+ }
+ }
+
+ // only declare timing valid if there are enough samples in rxbuf to demodulate a frame
+ *timing_valid = (cabsf(rx[timing_est]) > 0.0) && (*timing_mx > ofdm->timing_mx_thresh);
+
+ if (ofdm->verbose > 2) {
+ fprintf(stderr, " av_level: %f max: %f timing_est: %d timing_valid: %d\n", (double) av_level,
+ (double) *timing_mx, timing_est, *timing_valid);
+ }
+
+ return timing_est;
+}
+
+/*
+ * Determines frequency offset at current timing estimate, used for
+ * coarse freq offset estimation during acquisition. Works up to +/-
+ * the symbol rate, e.g. +/- 25Hz for the FreeDV 700D configuration.
+ */
+static float est_freq_offset_pilot_corr(struct OFDM *ofdm, complex float *rx, int timing_est, int fcoarse) {
+ int st = -20; int en = 20; float foff_est = 0.0f; float Cabs_max = 0.0f;
+
+ /* precompute the freq shift multiplied by pilot samples outside of main loop */
+
+ complex float wvec_pilot[ofdm->samplespersymbol];
+ int j;
+
+ switch(fcoarse) {
+ case -40:
+ for (j = 0; j < ofdm->samplespersymbol; j++)
+ wvec_pilot[j] = conjf(ofdm_wval[j]*ofdm->pilot_samples[j]);
+ break;
+ case 0:
+ for (j = 0; j < ofdm->samplespersymbol; j++)
+ wvec_pilot[j] = conjf(ofdm->pilot_samples[j]);
+ break;
+ case 40:
+ for (j = 0; j < ofdm->samplespersymbol; j++)
+ wvec_pilot[j] = ofdm_wval[j]*conjf(ofdm->pilot_samples[j]);
+ break;
+ default:
+ assert(0);
+ }
+
+ // sample sum of DFT magnitude of correlated signals at each freq offset and look for peak
+ for (int f = st; f < en; f++) {
+ complex float corr_st = 0.0f;
+ complex float corr_en = 0.0f;
+ float tmp = TAU * f / ofdm->fs;
+ complex float delta = cmplxconj(tmp);
+ complex float w = cmplxconj(0.0f);
+ int i;
+
+ for (i = 0; i < ofdm->samplespersymbol; i++) {
+ // "mix" down (correlate) the pilot sequences from frame with 0 Hz offset pilot samples
+ complex float csam = wvec_pilot[i] * w;
+ int est = timing_est + i;
+
+ corr_st += rx[est ] * csam;
+ corr_en += rx[est + ofdm->samplesperframe] * csam;
+ w = w * delta;
+ }
+
+ float Cabs = cabsf(corr_st) + cabsf(corr_en);
+
+ if (Cabs > Cabs_max) {
+ Cabs_max = Cabs;
+ foff_est = f;
+ }
+ }
+
+ ofdm->foff_metric = 0.0f; // not used in this version of freq est algorithm
+
+ if (ofdm->verbose > 2) {
+ fprintf(stderr, "cabs_max: %f foff_est: %f\n", (double) Cabs_max, (double) foff_est);
+ }
+
+ return foff_est;
+}
+
+
+/*
+ * ----------------------------------------------
+ * ofdm_txframe - modulates one frame of symbols
+ * ----------------------------------------------
+ */
+void ofdm_txframe(struct OFDM *ofdm, complex float *tx, complex float *tx_sym_lin) {
+ complex float aframe[ofdm->np * ofdm->ns][ofdm->nc + 2];
+ complex float asymbol[ofdm->m];
+ complex float asymbol_cp[ofdm->samplespersymbol];
+ int i, j, k, m;
+
+ /* initialize aframe to complex zero */
+
+ for (i = 0; i < (ofdm->np * ofdm->ns); i++) {
+ for (j = 0; j < (ofdm->nc + 2); j++) {
+ aframe[i][j] = 0.0f;
+ }
+ }
+
+ /*
+ * Place symbols in multi-carrier frame with pilots
+ * This will place boundary values of complex zero around data
+ */
+ int s = 0;
+ for (int r = 0; r < ofdm->np*ofdm->ns; r++) {
+
+ if ((r % ofdm->ns) == 0) {
+ /* copy in a row of complex pilots to first row of each frame */
+ for (i = 0; i < (ofdm->nc + 2); i++) {
+ aframe[r][i] = ofdm->pilots[i];
+ }
+ }
+ else {
+ /* copy in the Nc complex data symbols with [0 Nc 0] or (Nc + 2) total */
+ for (j = 1; j < (ofdm->nc + 1); j++) {
+ aframe[r][j] = tx_sym_lin[s++];
+ if (ofdm->dpsk_en == true) {
+ aframe[r][j] *= aframe[r-1][j];
+ }
+ }
+ }
+ }
+
+ /* OFDM up-convert symbol by symbol so we can add CP */
+
+ for (i = 0, m = 0; i < (ofdm->np * ofdm->ns); i++, m += ofdm->samplespersymbol) {
+ idft(ofdm, asymbol, aframe[i]);
+
+ /* Copy the last Ncp samples to the front */
+
+ for (j = (ofdm->m - ofdm->ncp), k = 0; j < ofdm->m; j++, k++) {
+ asymbol_cp[k] = asymbol[j];
+ }
+
+ /* Now copy the all samples for this row after it */
+
+ for (j = ofdm->ncp, k = 0; k < ofdm->m; j++, k++) {
+ asymbol_cp[j] = asymbol[k];
+ }
+
+ /* Now move row to the tx output */
+
+ for (j = 0; j < ofdm->samplespersymbol; j++) {
+ tx[m + j] = asymbol_cp[j];
+ }
+ }
+
+ size_t samplesperpacket = ofdm->np*ofdm->samplesperframe;
+ ofdm_hilbert_clipper(ofdm, tx, samplesperpacket);
+}
+
+
+/* Scale Tx signal and optionally apply two stage Hilbert clipper to improve PAPR */
+void ofdm_hilbert_clipper(struct OFDM *ofdm, complex float *tx, size_t n) {
+
+ /* vanilla Tx output waveform should be about OFDM_PEAK */
+ for(int i=0; i<n; i++) tx[i] *= ofdm->amp_scale;
+
+ if (ofdm->clip_en) {
+ // this gain sets the drive into the Hilbert Clipper and sets PAPR
+ for(int i=0; i<n; i++) tx[i] *= ofdm->clip_gain1;
+ ofdm_clip(tx, OFDM_PEAK, n);
+ }
+
+ /* BPF to remove out of band energy clipper introduces */
+ if (ofdm->tx_bpf_en) {
+ assert(ofdm->tx_bpf != NULL);
+ complex float tx_filt[n];
+
+ quisk_ccfFilter(tx, tx_filt, n, ofdm->tx_bpf);
+ memmove(tx, tx_filt, n * sizeof (complex float));
+ }
+
+ /* BPF messes up peak levels, this gain gets back to approx OFDM_PEAK */
+ if (ofdm->tx_bpf_en && ofdm->clip_en)
+ for(int i=0; i<n; i++) tx[i] *= ofdm->clip_gain2;
+
+ /* a very small percentage of samples may still exceed OFDM_PEAK, in
+ clipped or unclipped mode. Lets remove them so we present consistent
+ levels to the transmitter */
+
+ ofdm_clip(tx, OFDM_PEAK, n);
+}
+
+
+struct OFDM_CONFIG *ofdm_get_config_param(struct OFDM *ofdm) { return &ofdm->config; }
+int ofdm_get_nin(struct OFDM *ofdm) {return ofdm->nin;}
+int ofdm_get_samples_per_frame(struct OFDM *ofdm) { return ofdm->samplesperframe;}
+int ofdm_get_samples_per_packet(struct OFDM *ofdm) { return ofdm->samplesperframe*ofdm->np;}
+int ofdm_get_max_samples_per_frame(struct OFDM *ofdm) {return ofdm->max_samplesperframe; }
+int ofdm_get_bits_per_frame(struct OFDM *ofdm) {return ofdm->bitsperframe; }
+int ofdm_get_bits_per_packet(struct OFDM *ofdm) {return ofdm->bitsperpacket; }
+void ofdm_set_verbose(struct OFDM *ofdm, int level) { ofdm->verbose = level; }
+
+void ofdm_set_timing_enable(struct OFDM *ofdm, bool val) {
+ ofdm->timing_en = val;
+
+ if (ofdm->timing_en == false) {
+ /* manually set ideal timing instant */
+
+ ofdm->sample_point = (ofdm->ncp - 1);
+ }
+}
+
+int ofdm_get_phase_est_bandwidth_mode(struct OFDM *ofdm) {
+ return ofdm->phase_est_bandwidth_mode; /* int version of enum */
+}
+
+void ofdm_set_phase_est_bandwidth_mode(struct OFDM *ofdm, int val) {
+ assert((val == AUTO_PHASE_EST) || (val == LOCKED_PHASE_EST));
+ ofdm->phase_est_bandwidth_mode = val;
+}
+
+void ofdm_set_foff_est_enable(struct OFDM *ofdm, bool val) {
+ ofdm->foff_est_en = val;
+}
+
+void ofdm_set_phase_est_enable(struct OFDM *ofdm, bool val) {
+ ofdm->phase_est_en = val;
+}
+
+void ofdm_set_off_est_hz(struct OFDM *ofdm, float val) {
+ ofdm->foff_est_hz = val;
+}
+
+void ofdm_set_tx_bpf(struct OFDM *ofdm, bool val) {
+ if (val == true) {
+ if (ofdm->tx_bpf == NULL)
+ allocate_tx_bpf(ofdm);
+
+ ofdm->tx_bpf_en = true;
+ }
+ else {
+ if (ofdm->tx_bpf != NULL)
+ deallocate_tx_bpf(ofdm);
+
+ ofdm->tx_bpf_en = false;
+ }
+}
+
+void ofdm_set_dpsk(struct OFDM *ofdm, bool val) {
+ ofdm->dpsk_en = val;
+}
+
+// select burst mode, and set packets per burst
+void ofdm_set_packets_per_burst(struct OFDM *ofdm, int packetsperburst) {
+ ofdm->data_mode = "burst";
+ ofdm->packetsperburst = packetsperburst;
+ ofdm->postambledetectoren = true;
+}
+
+/*
+ * --------------------------------------
+ * ofdm_mod - modulates one frame of bits
+ * --------------------------------------
+ */
+void ofdm_mod(struct OFDM *ofdm, COMP *result, const int *tx_bits) {
+ int length = ofdm->bitsperpacket / ofdm->bps;
+ complex float *tx = (complex float *) result; // complex has same memory layout
+ complex float tx_sym_lin[length];
+ int dibit[2];
+ int s, i;
+
+ if (ofdm->bps == 1) {
+ /* Here we will have Nbitsperpacket / 1 */
+
+ for (s = 0; s < length; s++) {
+ tx_sym_lin[s] = (float) (2 * tx_bits[s] - 1);
+ }
+ } else if (ofdm->bps == 2) {
+ /* Here we will have Nbitsperpacket / 2 */
+
+ for (s = 0, i = 0; i < length; s += 2, i++) {
+ dibit[0] = tx_bits[s + 1] & 0x1;
+ dibit[1] = tx_bits[s ] & 0x1;
+
+ tx_sym_lin[i] = qpsk_mod(dibit);
+ }
+ } /* else if (ofdm->bps == 3) { } TODO */
+
+ ofdm_txframe(ofdm, tx, tx_sym_lin);
+}
+
+/*
+ * ----------------------------------------------------------------------------------
+ * ofdm_sync_search - attempts to find coarse sync parameters for modem initial sync
+ * ----------------------------------------------------------------------------------
+ */
+
+/*
+ * This is a wrapper to maintain the older functionality
+ * with an array of COMPs as input
+ */
+int ofdm_sync_search(struct OFDM *ofdm, COMP *rxbuf_in) {
+ /*
+ * insert latest input samples into rxbuf
+ * so it is primed for when we have to call ofdm_demod()
+ */
+
+ /* note can't use memcpy when src and dest overlap */
+ memmove(&ofdm->rxbuf[0], &ofdm->rxbuf[ofdm->nin],
+ (ofdm->nrxbuf - ofdm->nin) * sizeof (complex float));
+ memmove(&ofdm->rxbuf[(ofdm->nrxbuf - ofdm->nin)],
+ rxbuf_in, ofdm->nin * sizeof (complex float));
+
+ return(ofdm_sync_search_core(ofdm));
+}
+
+/*
+ * This is a wrapper to reduce memory allocated.
+ * This works with ofdm_demod and freedv_api. Gain is not used here.
+ */
+int ofdm_sync_search_shorts(struct OFDM *ofdm, short *rxbuf_in, float gain) {
+ int i, j;
+
+ /* shift the buffer left based on nin */
+
+ memmove(&ofdm->rxbuf[0], &ofdm->rxbuf[ofdm->nin],
+ (ofdm->nrxbuf - ofdm->nin) * sizeof (complex float));
+
+ /* insert latest input samples onto tail of rxbuf */
+
+ for (j = 0, i = (ofdm->nrxbuf - ofdm->nin); i < ofdm->nrxbuf; j++, i++) {
+ ofdm->rxbuf[i] = ((float)rxbuf_in[j] / 32767.0f);
+ }
+
+ return ofdm_sync_search_core(ofdm);
+}
+
+/* Joint estimation of timing and freq used for burst data acquisition */
+
+static float est_timing_and_freq(struct OFDM *ofdm,
+ int *t_est, float *foff_est,
+ complex float *rx, int Nrx,
+ complex float *known_samples, int Npsam,
+ int tstep, float fmin, float fmax, float fstep) {
+ int Ncorr = Nrx - Npsam + 1;
+ float max_corr = 0;
+ *t_est = 0; *foff_est = 0.0;
+ for (float afcoarse=fmin; afcoarse<=fmax; afcoarse += fstep) {
+ float w = TAU * afcoarse / ofdm->fs;
+ complex float mvec[Npsam];
+ for(int i=0; i<Npsam; i++) {
+ complex float ph = cmplx(w*i);
+ mvec[i] = conjf(known_samples[i]*ph);
+ }
+ for(int t=0; t<Ncorr; t+=tstep) {
+ complex float corr = ofdm_complex_dot_product(&rx[t], mvec, Npsam);
+
+ if (cabsf(corr) > max_corr) {
+ max_corr = cabsf(corr);
+ *t_est = t;
+ *foff_est = afcoarse;
+ }
+ }
+ }
+
+ /* obtain normalised real number for timing_mx */
+ float mag1=0, mag2=0;
+ for(int i=0; i<Npsam; i++) {
+ mag1 += cabsf(known_samples[i]*conjf(known_samples[i]));
+ mag2 += cabsf(rx[i+*t_est]*conjf(rx[i+*t_est]));
+ }
+ float timing_mx = max_corr*max_corr/(mag1*mag2+1E-12);
+ if (ofdm->verbose > 2) {
+ fprintf(stderr, " t_est: %4d timing:mx: %f foff_est: %f\n", *t_est, (double)timing_mx, (double)*foff_est);
+ }
+
+ return timing_mx;
+}
+
+/* Two stage burst mode acquisition */
+
+static void burst_acquisition_detector(struct OFDM *ofdm,
+ complex float *rx, int n,
+ complex float *known_sequence,
+ int *ct_est, float *foff_est, float *timing_mx)
+{
+
+ float fmin, fmax, fstep;
+ int tstep;
+
+ // initial search over coarse grid
+ tstep = 4; fstep = 5; fmin = ofdm->fmin; fmax = ofdm->fmax;
+ *timing_mx = est_timing_and_freq(ofdm, ct_est, foff_est,
+ &rx[n], 2*ofdm->samplesperframe,
+ known_sequence, ofdm->samplesperframe,
+ tstep, fmin, fmax, fstep);
+
+ // refine estimate over finer grid
+ fmin = *foff_est - ceilf(fstep/2.0); fmax = *foff_est + ceilf(fstep/2.0);
+ int fine_st = n + *ct_est - tstep/2.0;
+ *timing_mx = est_timing_and_freq(ofdm, ct_est, foff_est,
+ &rx[fine_st], ofdm->samplesperframe + tstep,
+ known_sequence, ofdm->samplesperframe,
+ 1, fmin, fmax, 1.0);
+
+ // refer ct_est to nominal start of frame rx[n]
+ *ct_est += fine_st - n;
+}
+
+static int ofdm_sync_search_burst(struct OFDM *ofdm) {
+
+ int st = ofdm->rxbufst + ofdm->m + ofdm->ncp + ofdm->samplesperframe;
+ char *pre_post = "";
+
+ int pre_ct_est; float pre_foff_est, pre_timing_mx;
+ burst_acquisition_detector(ofdm, ofdm->rxbuf, st, (complex float*)ofdm->tx_preamble,
+ &pre_ct_est, &pre_foff_est, &pre_timing_mx);
+
+ int post_ct_est; float post_foff_est, post_timing_mx;
+ if (ofdm->postambledetectoren)
+ burst_acquisition_detector(ofdm, ofdm->rxbuf, st, (complex float*)ofdm->tx_postamble,
+ &post_ct_est, &post_foff_est, &post_timing_mx);
+
+ int ct_est; float foff_est, timing_mx;
+ if (!ofdm->postambledetectoren || (pre_timing_mx > post_timing_mx)) {
+ timing_mx = pre_timing_mx; ct_est = pre_ct_est; foff_est = pre_foff_est;
+ pre_post = "pre";
+ } else {
+ timing_mx = post_timing_mx; ct_est = post_ct_est; foff_est = post_foff_est;
+ pre_post = "post";
+ }
+
+ int timing_valid = timing_mx > ofdm->timing_mx_thresh;
+ if (timing_valid) {
+ if (!strcmp(pre_post, "post")) {
+ ofdm->post++;
+ // we won't be need any new samples for a while ....
+ ofdm->nin = 0;
+ // backup to first modem frame in packet
+ ofdm->rxbufst -= ofdm->np*ofdm->samplesperframe;
+ ofdm->rxbufst += ct_est;
+ } else {
+ ofdm->pre++;
+ // ct_est is start of preamble, so advance past that to start of first modem frame
+ ofdm->nin = ofdm->samplesperframe + ct_est - 1;
+ }
+ } else
+ ofdm->nin = ofdm->samplesperframe;
+
+ ofdm->ct_est = ct_est;
+ ofdm->foff_est_hz = foff_est;
+ ofdm->timing_mx = timing_mx;
+ ofdm->timing_valid = timing_valid;
+
+ if (ofdm->verbose > 1) {
+ fprintf(stderr, " ct_est: %4d nin: %4d mx: %3.2f foff_est: % 5.1f timing_valid: %d %4s\n",
+ ct_est, ofdm->nin, (double)timing_mx, (double)foff_est, timing_valid, pre_post);
+ }
+
+ return ofdm->timing_valid;
+}
+
+/*
+ * Attempts to find coarse sync parameters for modem initial sync (streaming mode)
+ */
+static int ofdm_sync_search_stream(struct OFDM *ofdm) {
+ int act_est, afcoarse;
+
+ /* Attempt coarse timing estimate (i.e. detect start of frame) at a range of frequency offsets */
+
+ int st = ofdm->rxbufst + ofdm->samplesperframe + ofdm->samplespersymbol;
+ int en = st + 2 * ofdm->samplesperframe + ofdm->samplespersymbol;
+
+ int fcoarse = 0;
+ float atiming_mx, timing_mx = 0.0f;
+ int ct_est = 0;
+ int atiming_valid, timing_valid = 0;
+
+ PROFILE_VAR(timing_start);
+ PROFILE_SAMPLE(timing_start);
+
+ for (afcoarse = -40; afcoarse <= 40; afcoarse += 40) {
+ act_est = est_timing(ofdm, &ofdm->rxbuf[st], (en - st), afcoarse, &atiming_mx, &atiming_valid, 2);
+
+ if (atiming_mx > timing_mx) {
+ ct_est = act_est;
+ timing_mx = atiming_mx;
+ fcoarse = afcoarse;
+ timing_valid = atiming_valid;
+ }
+ }
+
+ PROFILE_SAMPLE_AND_LOG2(timing_start, " timing");
+
+ /* refine freq est within -/+ 20 Hz window */
+
+ PROFILE_VAR(freq_start);
+ PROFILE_SAMPLE(freq_start);
+
+ ofdm->coarse_foff_est_hz = est_freq_offset_pilot_corr(ofdm, &ofdm->rxbuf[st], ct_est, fcoarse);
+ ofdm->coarse_foff_est_hz += fcoarse;
+
+ PROFILE_SAMPLE_AND_LOG2(freq_start, " freq");
+
+ if (ofdm->verbose > 1) {
+ fprintf(stderr, " ct_est: %4d foff_est: %4.1f timing_valid: %d timing_mx: %5.4f\n",
+ ct_est, (double) ofdm->coarse_foff_est_hz, timing_valid,
+ (double)timing_mx);
+ }
+
+ ofdm->timing_valid = timing_valid;
+ if (ofdm->timing_valid != 0) {
+ /* potential candidate found .... */
+
+ /* calculate number of samples we need on next buffer to get into sync */
+
+ ofdm->nin = ct_est;
+
+ /* reset modem states */
+
+ ofdm->sample_point = ofdm->timing_est = 0;
+ ofdm->foff_est_hz = ofdm->coarse_foff_est_hz;
+ ofdm->timing_mx = timing_mx;
+ } else {
+ ofdm->nin = ofdm->samplesperframe;
+ }
+
+ ofdm->timing_mx = timing_mx;
+
+ return ofdm->timing_valid;
+}
+
+static int ofdm_sync_search_core(struct OFDM *ofdm) {
+ if (ofdm->rx_bpf_en) {
+ assert(ofdm->rx_bpf != NULL);
+ complex float *rxbuf_in = &ofdm->rxbuf[(ofdm->nrxbuf - ofdm->nin)];
+ quisk_ccfFilter(rxbuf_in, rxbuf_in, ofdm->nin, ofdm->rx_bpf);
+ }
+ if (!strcmp(ofdm->data_mode, "burst"))
+ return ofdm_sync_search_burst(ofdm);
+ else
+ return ofdm_sync_search_stream(ofdm);
+}
+
+/*
+ * ------------------------------------------
+ * ofdm_demod - Demodulates one frame of bits
+ * ------------------------------------------
+ */
+
+/*
+ * This wrapper accepts an array of COMPs as input
+ */
+void ofdm_demod(struct OFDM *ofdm, int *rx_bits, COMP *rxbuf_in) {
+ complex float *rx = (complex float *) &rxbuf_in[0]; // complex has same memory layout
+ int i, j;
+
+ /* shift the buffer left based on nin */
+ for (i = 0, j = ofdm->nin; i < (ofdm->nrxbuf - ofdm->nin); i++, j++) {
+ ofdm->rxbuf[i] = ofdm->rxbuf[j];
+ }
+
+ /* insert latest input samples onto tail of rxbuf */
+ for (j = 0, i = (ofdm->nrxbuf - ofdm->nin); i < ofdm->nrxbuf; j++, i++) {
+ ofdm->rxbuf[i] = rx[j];
+ }
+
+ ofdm_demod_core(ofdm, rx_bits);
+}
+
+/*
+ * This is a wrapper with a real short interface to minimise allocated memory.
+ * This works with ofdm_demod and freedv_api. Gain is not used here.
+ */
+void ofdm_demod_shorts(struct OFDM *ofdm, int *rx_bits, short *rxbuf_in, float gain) {
+ int i, j;
+
+ /* shift the buffer left based on nin */
+
+ for (i = 0, j = ofdm->nin; i < (ofdm->nrxbuf - ofdm->nin); i++, j++) {
+ ofdm->rxbuf[i] = ofdm->rxbuf[j];
+ }
+
+ /* insert latest input samples onto tail of rxbuf */
+ for (j = 0, i = (ofdm->nrxbuf - ofdm->nin); i < ofdm->nrxbuf; j++, i++) {
+ ofdm->rxbuf[i] = ((float)rxbuf_in[j] / 32767.0f);
+ }
+
+ ofdm_demod_core(ofdm, rx_bits);
+}
+
+/*
+ * This is the rest of the function which expects that the data is
+ * already in ofdm->rxbuf
+ */
+static void ofdm_demod_core(struct OFDM *ofdm, int *rx_bits) {
+ int prev_timing_est = ofdm->timing_est;
+ int i, j, k, rr, st, en;
+
+ if (ofdm->rx_bpf_en) {
+ assert(ofdm->rx_bpf != NULL);
+ complex float *rxbuf_in = &ofdm->rxbuf[(ofdm->nrxbuf - ofdm->nin)];
+ quisk_ccfFilter(rxbuf_in, rxbuf_in, ofdm->nin, ofdm->rx_bpf);
+ }
+
+ /*
+ * get user and calculated freq offset
+ */
+ float woff_est = TAU * ofdm->foff_est_hz / ofdm->fs;
+
+ /* update timing estimate ---------------------------------------------- */
+
+ if (ofdm->timing_en == true) {
+ /* update timing at start of every frame */
+
+ st = ofdm->rxbufst + ofdm->samplespersymbol + ofdm->samplesperframe - (int) floorf((float)ofdm->ftwindowwidth / 2) + ofdm->timing_est;
+ en = st + ofdm->samplesperframe - 1 + ofdm->samplespersymbol + ofdm->ftwindowwidth;
+
+ complex float work[(en - st)];
+
+ /*
+ * Adjust for the frequency error by shifting the phase
+ * using a conjugate multiply
+ */
+ for (j = 0, i = st; i < en; j++, i++) {
+ work[j] = ofdm->rxbuf[i] * cmplxconj(woff_est * i);
+ }
+
+ int ft_est = est_timing(ofdm, work, (en - st), 0.0f, &ofdm->timing_mx, &ofdm->timing_valid, 1);
+
+ ofdm->timing_est += ft_est - (int) ceilf((float)ofdm->ftwindowwidth / 2) + 1;
+
+ if (ofdm->verbose > 2) {
+ fprintf(stderr, " ft_est: %2d timing_est: %2d sample_point: %2d\n", ft_est, ofdm->timing_est,
+ ofdm->sample_point);
+ }
+
+ /* Black magic to keep sample_point inside cyclic prefix. Or something like that. */
+
+ ofdm->sample_point = max(ofdm->timing_est + 4, ofdm->sample_point);
+ ofdm->sample_point = min(ofdm->timing_est + ofdm->ncp-4, ofdm->sample_point);
+ }
+
+ /*
+ * Convert the time-domain samples to the frequency-domain using the rx_sym
+ * data matrix. This will be Nc+2 carriers of 11 symbols.
+ *
+ * You will notice there are Nc+2 BPSK symbols for each pilot symbol, and
+ * that there are Nc QPSK symbols for each data symbol.
+ *
+ * XXXXXXXXXXXXXXXXX <-- Timing Slip
+ * PPPPPPPPPPPPPPPPPPP <-- Previous Frames Pilot
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD Ignore these past data symbols
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * PPPPPPPPPPPPPPPPPPP <-- This Frames Pilot
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD These are the current data symbols to be decoded
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * PPPPPPPPPPPPPPPPPPP <-- Next Frames Pilot
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD Ignore these next data symbols
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * DDDDDDDDDDDDDDDDD
+ * PPPPPPPPPPPPPPPPPPP <-- Future Frames Pilot
+ * XXXXXXXXXXXXXXXXX <-- Timing Slip
+ *
+ * So this algorithm will have seven data symbols and four pilot symbols to process.
+ * The average of the four pilot symbols is our phase estimation.
+ */
+ for (i = 0; i < (ofdm->ns + 3); i++) {
+ for (j = 0; j < (ofdm->nc + 2); j++) {
+ ofdm->rx_sym[i][j] = 0.0f;
+ }
+ }
+
+ /*
+ * "Previous" pilot symbol is one modem frame above.
+ */
+ st = ofdm->rxbufst + ofdm->samplespersymbol + 1 + ofdm->sample_point;
+ en = st + ofdm->m;
+
+ complex float work[ofdm->m];
+
+ /* down-convert at current timing instant------------------------------- */
+
+ for (k = 0, j = st; j < en; k++, j++) {
+ work[k] = ofdm->rxbuf[j] * cmplxconj(woff_est * j);
+ }
+
+ /*
+ * Each symbol is of course ofdm->samplespersymbol samples long and
+ * becomes Nc+2 carriers after DFT.
+ *
+ * We put this carrier pilot symbol at the top of our matrix:
+ *
+ * 1 .................. Nc+2
+ *
+ * +----------------------+
+ * | Previous Pilot | rx_sym[0]
+ * +----------------------+
+ * | |
+ *
+ */
+ dft(ofdm, ofdm->rx_sym[0], work);
+
+ /*
+ * "This" pilot comes after the extra symbol allotted at the top, and after
+ * the "previous" pilot and previous data symbols (let's call it, the previous
+ * modem frame).
+ *
+ * So we will now be starting at "this" pilot symbol, and continuing to the
+ * "next" pilot symbol.
+ *
+ * In this routine we also process the current data symbols.
+ */
+ for (rr = 0; rr < (ofdm->ns + 1); rr++) {
+ st = ofdm->rxbufst + ofdm->samplespersymbol + ofdm->samplesperframe + (rr * ofdm->samplespersymbol) + 1 + ofdm->sample_point;
+ en = st + ofdm->m;
+
+ /* down-convert at current timing instant---------------------------------- */
+
+ for (k = 0, j = st; j < en; k++, j++) {
+ work[k] = ofdm->rxbuf[j] * cmplxconj(woff_est * j);
+ }
+
+ /*
+ * We put these Nc+2 carrier symbols into our matrix after the previous pilot:
+ *
+ * 1 .................. Nc+2
+ * | Previous Pilot | rx_sym[0]
+ * +----------------------+
+ * | This Pilot | rx_sym[1]
+ * +----------------------+
+ * | Data | rx_sym[2]
+ * +----------------------+
+ * | Data | rx_sym[3]
+ * +----------------------+
+ * | Data | rx_sym[4]
+ * +----------------------+
+ * | Data | rx_sym[5]
+ * +----------------------+
+ * | Data | rx_sym[6]
+ * +----------------------+
+ * | Data | rx_sym[7]
+ * +----------------------+
+ * | Data | rx_sym[8]
+ * +----------------------+
+ * | Next Pilot | rx_sym[9]
+ * +----------------------+
+ * | | rx_sym[10]
+ */
+ dft(ofdm, ofdm->rx_sym[rr + 1], work);
+ }
+
+ /*
+ * OK, now we want to process to the "future" pilot symbol. This is after
+ * the "next" modem frame.
+ *
+ * We are ignoring the data symbols between the "next" pilot and "future" pilot.
+ * We only want the "future" pilot symbol, to perform the averaging of all pilots.
+ */
+ st = ofdm->rxbufst + ofdm->samplespersymbol + (3 * ofdm->samplesperframe) + 1 + ofdm->sample_point;
+ en = st + ofdm->m;
+
+ /* down-convert at current timing instant------------------------------- */
+
+ for (k = 0, j = st; j < en; k++, j++) {
+ work[k] = ofdm->rxbuf[j] * cmplxconj(woff_est * j);
+ }
+
+ /*
+ * We put the future pilot after all the previous symbols in the matrix:
+ *
+ * 1 .................. Nc+2
+ *
+ * | | rx_sym[9]
+ * +----------------------+
+ * | Future Pilot | rx_sym[10]
+ * +----------------------+
+ */
+ dft(ofdm, ofdm->rx_sym[ofdm->ns + 2], work);
+
+ /*
+ * We are finished now with the DFT and down conversion
+ * From here on down we are in the frequency domain
+ */
+
+ /* est freq err based on all carriers ---------------------------------- */
+
+ if (ofdm->foff_est_en == true) {
+ /*
+ * sym[1] is 'this' pilot symbol, sym[9] is 'next' pilot symbol.
+ *
+ * By subtracting the two averages of these pilots, we find the frequency
+ * by the change in phase over time.
+ */
+ complex float freq_err_rect =
+ conjf(vector_sum(ofdm->rx_sym[1], ofdm->nc + 2)) *
+ vector_sum(ofdm->rx_sym[ofdm->ns + 1], ofdm->nc + 2);
+
+ /* prevent instability in atan(im/re) when real part near 0 */
+
+ freq_err_rect += 1E-6f;
+
+ float freq_err_hz = cargf(freq_err_rect) * ofdm->rs / (TAU * ofdm->ns);
+ if (ofdm->foff_limiter) {
+ /* optionally tame updates in low SNR channels */
+ if (freq_err_hz > 1.0) freq_err_hz = 1.0;
+ if (freq_err_hz < -1.0) freq_err_hz = -1.0;
+ }
+ ofdm->foff_est_hz += (ofdm->foff_est_gain * freq_err_hz);
+ }
+
+ /* OK - now estimate and correct pilot phase -------------------------- */
+
+ complex float aphase_est_pilot_rect;
+ float aphase_est_pilot[ofdm->nc + 2];
+ float aamp_est_pilot[ofdm->nc + 2];
+
+ for (i = 0; i < (ofdm->nc + 2); i++) {
+ aphase_est_pilot[i] = 10.0f;
+ aamp_est_pilot[i] = 0.0f;
+ }
+
+ for (i = 1; i < (ofdm->nc + 1); i++) { /* ignore first and last carrier for count */
+ if (ofdm->phase_est_bandwidth == low_bw) {
+ complex float symbol[3];
+
+ /*
+ * Use all pilots normally, results in low SNR performance,
+ * but will fall over in high Doppler propagation
+ *
+ * Basically we divide the Nc+2 pilots into groups of 3
+ * Then average the phase surrounding each of the data symbols.
+ */
+ for (k = 0, j = (i - 1); k < 3; k++, j++) {
+ symbol[k] = ofdm->rx_sym[1][j] * conjf(ofdm->pilots[j]); /* this pilot conjugate */
+ }
+
+ aphase_est_pilot_rect = vector_sum(symbol, 3);
+
+ for (k = 0, j = (i - 1); k < 3; k++, j++) {
+ symbol[k] = ofdm->rx_sym[ofdm->ns + 1][j] * conjf(ofdm->pilots[j]); /* next pilot conjugate */
+ }
+
+ aphase_est_pilot_rect += vector_sum(symbol, 3);
+
+ /* use pilots in past and future */
+
+ for (k = 0, j = (i - 1); k < 3; k++, j++) {
+ symbol[k] = ofdm->rx_sym[0][j] * conjf(ofdm->pilots[j]); /* previous pilot */
+ }
+
+ aphase_est_pilot_rect += vector_sum(symbol, 3);
+
+ for (k = 0, j = (i - 1); k < 3; k++, j++) {
+ symbol[k] = ofdm->rx_sym[ofdm->ns + 2][j] * conjf(ofdm->pilots[j]); /* future pilot */
+ }
+
+ aphase_est_pilot_rect += vector_sum(symbol, 3);
+
+ /* amplitude is estimated over 12 pilots */
+ aphase_est_pilot_rect /= 12.0f;
+
+ aphase_est_pilot[i] = cargf(aphase_est_pilot_rect);
+ aamp_est_pilot[i] = cabsf(aphase_est_pilot_rect);
+ } else {
+ assert(ofdm->phase_est_bandwidth == high_bw);
+
+ /*
+ * Use only symbols at 'this' and 'next' to quickly track changes
+ * in phase due to high Doppler spread in propagation (no neighbor averaging).
+ *
+ * As less pilots are averaged, low SNR performance will be poorer
+ */
+ aphase_est_pilot_rect = ofdm->rx_sym[1][i] * conjf(ofdm->pilots[i]); /* "this" pilot conjugate */
+ aphase_est_pilot_rect += ofdm->rx_sym[ofdm->ns + 1][i] * conjf(ofdm->pilots[i]); /* "next" pilot conjugate */
+
+ /* we estimate over 2 pilots */
+ aphase_est_pilot_rect /= 2.0f;
+ aphase_est_pilot[i] = cargf(aphase_est_pilot_rect);
+
+ if (ofdm->amp_est_mode == 0) {
+ // legacy 700D ampl est method
+ aamp_est_pilot[i] = cabsf(aphase_est_pilot_rect);
+ } else {
+ aamp_est_pilot[i] = cabsf(ofdm->rx_sym[1][i]) + cabsf(ofdm->rx_sym[ofdm->ns + 1][i])/2.0;
+ }
+ }
+
+ aphase_est_pilot[i] = cargf(aphase_est_pilot_rect);
+ aamp_est_pilot[i] = cabsf(aphase_est_pilot_rect);
+ }
+
+ /*
+ * correct the phase offset using phase estimate, and demodulate
+ * bits, separate loop as it runs across cols (carriers) to get
+ * frame bit ordering correct
+ */
+ complex float rx_corr;
+ int abit[2];
+ int bit_index = 0;
+ float sum_amp = 0.0f;
+
+ for (rr = 0; rr < ofdm->rowsperframe; rr++) {
+ /*
+ * Note the i starts with the second carrier, ends with Nc+1.
+ * so we ignore the first and last carriers.
+ *
+ * Also note we are using sym[2..8] or the seven data symbols.
+ */
+ for (i = 1; i < (ofdm->nc + 1); i++) {
+ if (ofdm->phase_est_en == true) {
+ if (ofdm->dpsk_en == true) {
+ /* differential detection, using pilot as reference at start of frame */
+ rx_corr = ofdm->rx_sym[rr + 2][i] * cmplxconj(cargf(ofdm->rx_sym[rr + 1][i]));
+ } else {
+ /* regular coherent detection */
+ rx_corr = ofdm->rx_sym[rr + 2][i] * cmplxconj(aphase_est_pilot[i]);
+ }
+ } else {
+ rx_corr = ofdm->rx_sym[rr + 2][i];
+ }
+
+ /*
+ * Output complex data symbols after phase correction;
+ * (_np = no pilots) the pilot symbols have been removed
+ */
+ ofdm->rx_np[(rr * ofdm->nc) + (i - 1)] = rx_corr;
+
+ /*
+ * Note even though amp ests are the same for each col,
+ * the FEC decoder likes to have one amplitude per symbol
+ * so convenient to log them all
+ */
+ ofdm->rx_amp[(rr * ofdm->nc) + (i - 1)] = aamp_est_pilot[i];
+ sum_amp += aamp_est_pilot[i];
+
+ /*
+ * Note like amps in this implementation phase ests are the
+ * same for each col, but we log them for each symbol anyway
+ */
+ ofdm->aphase_est_pilot_log[(rr * ofdm->nc) + (i - 1)] = aphase_est_pilot[i];
+
+ if (ofdm->bps == 1) {
+ rx_bits[bit_index++] = crealf(rx_corr) > 0.0f;
+ } else if (ofdm->bps == 2) {
+ /*
+ * Only one final task, decode what quadrant the phase
+ * is in, and return the dibits
+ */
+ qpsk_demod(rx_corr, abit);
+ rx_bits[bit_index++] = abit[1];
+ rx_bits[bit_index++] = abit[0];
+ }
+ }
+ }
+
+ /* update mean amplitude estimate for LDPC decoder scaling */
+
+ ofdm->mean_amp = 0.9f * ofdm->mean_amp + 0.1f * sum_amp / (ofdm->rowsperframe * ofdm->nc);
+
+ /* Adjust nin to take care of sample clock offset */
+
+ ofdm->nin = ofdm->samplesperframe;
+
+ if (ofdm->timing_en == true) {
+ ofdm->clock_offset_counter += (prev_timing_est - ofdm->timing_est);
+
+ int thresh = ofdm->samplespersymbol / 8;
+ int tshift = ofdm->samplespersymbol / 4;
+
+ if (ofdm->timing_est > thresh) {
+ ofdm->nin = ofdm->samplesperframe + tshift;
+ ofdm->timing_est -= tshift;
+ ofdm->sample_point -= tshift;
+ } else if (ofdm->timing_est < -thresh) {
+ ofdm->nin = ofdm->samplesperframe - tshift;
+ ofdm->timing_est += tshift;
+ ofdm->sample_point += tshift;
+ }
+ }
+
+ // use internal rxbuf samples if they are available
+ int rxbufst_next = ofdm->rxbufst + ofdm->nin;
+ if (rxbufst_next + ofdm->nrxbufmin <= ofdm->nrxbuf) {
+ ofdm->rxbufst = rxbufst_next;
+ ofdm->nin = 0;
+ }
+}
+
+
+/*
+ * Returns an estimate of Es/No in dB - see esno_est.m for more info
+ */
+float ofdm_esno_est_calc(complex float *rx_sym, int nsym) {
+
+ float sig_var = 0;
+ float step = 1.0f/nsym;
+ for (int i = 0; i < nsym; i++)
+ sig_var += (cnormf(rx_sym[i]) * step);
+ float sig_rms = sqrtf(sig_var);
+
+ float sum_x = 0.0f; float sum_xx = 0.0f; int n = 0;
+ for (int i = 0; i < nsym; i++) {
+ complex float s = rx_sym[i];
+
+ if (cabsf(s) > sig_rms) {
+ if (fabs(crealf(s)) > fabs(cimagf(s))) {
+ sum_x += cimagf(s);
+ sum_xx += cimagf(s) * cimagf(s);
+ } else {
+ sum_x += crealf(s);
+ sum_xx += crealf(s) * crealf(s);
+ }
+ n++;
+ }
+ }
+
+ float noise_var;
+ if (n > 1)
+ noise_var = (n * sum_xx - sum_x * sum_x) / (n * (n - 1));
+ else
+ noise_var = sig_var;
+ noise_var *= 2.0f;
+
+ float EsNodB = 10.0f * log10f((1E-12f + sig_var) / (1E-12f + noise_var));
+ assert(isnan(EsNodB) == 0);
+ return EsNodB;
+}
+
+
+float ofdm_snr_from_esno(struct OFDM *ofdm, float EsNodB) {
+ float cyclic_power = 10.0f * log10f((float)(ofdm->ncp + ofdm->m) / ofdm->m);
+ return EsNodB + 10.0f * log10f((float)(ofdm->nc * ofdm->rs) / 3000.0f) + cyclic_power;
+}
+
+/*
+ * state machine for 700D/2020
+ */
+void ofdm_sync_state_machine_voice1(struct OFDM *ofdm, uint8_t *rx_uw) {
+ int i;
+
+ State next_state = ofdm->sync_state;
+
+ ofdm->sync_start = false;
+ ofdm->sync_end = false;
+
+ if (ofdm->sync_state == search) {
+ if (ofdm->timing_valid) {
+ ofdm->frame_count = 0;
+ ofdm->sync_counter = 0;
+ ofdm->sync_start = true;
+ ofdm->clock_offset_counter = 0;
+ next_state = trial;
+ }
+ }
+
+ if ((ofdm->sync_state == synced) || (ofdm->sync_state == trial)) {
+ ofdm->frame_count++;
+
+ /*
+ * freq offset est may be too far out, and has aliases every 1/Ts, so
+ * we use a Unique Word to get a really solid indication of sync.
+ */
+ ofdm->uw_errors = 0;
+
+ for (i = 0; i < ofdm->nuwbits; i++) {
+ ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i];
+ }
+
+ /*
+ * during trial sync we don't tolerate errors so much, we look
+ * for 3 consecutive frames with low error rate to confirm sync
+ */
+ if (ofdm->sync_state == trial) {
+ if (ofdm->uw_errors > 2) {
+ /* if we exceed thresh stay in trial sync */
+
+ ofdm->sync_counter++;
+ ofdm->frame_count = 0;
+ }
+
+ if (ofdm->sync_counter == 2) {
+ /* if we get two bad frames drop sync and start again */
+
+ next_state = search;
+ ofdm->phase_est_bandwidth = high_bw;
+ }
+
+ if (ofdm->frame_count == 4) {
+ /* three good frames, sync is OK! */
+
+ next_state = synced;
+ /* change to low bandwidth, but more accurate phase estimation */
+ /* but only if not locked to high */
+
+ if (ofdm->phase_est_bandwidth_mode != LOCKED_PHASE_EST) {
+ ofdm->phase_est_bandwidth = low_bw;
+ }
+ }
+ }
+
+ /* once we have synced up we tolerate a higher error rate to wait out fades */
+
+ if (ofdm->sync_state == synced) {
+ if (ofdm->uw_errors > 2) {
+ ofdm->sync_counter++;
+ } else {
+ ofdm->sync_counter = 0;
+ }
+
+ if ((ofdm->sync_mode == autosync) && (ofdm->sync_counter > 6)) {
+ /* run of consecutive bad frames ... drop sync */
+
+ next_state = search;
+ ofdm->phase_est_bandwidth = high_bw;
+ }
+ }
+ }
+
+ ofdm->last_sync_state = ofdm->sync_state;
+ ofdm->sync_state = next_state;
+}
+
+/*
+ * data (streaming mode) state machine
+ */
+void ofdm_sync_state_machine_data_streaming(struct OFDM *ofdm, uint8_t *rx_uw) {
+ State next_state = ofdm->sync_state;
+ int i;
+
+ ofdm->sync_start = ofdm->sync_end = 0;
+
+ if (ofdm->sync_state == search) {
+ if (ofdm->timing_valid != 0) {
+ ofdm->sync_start = true;
+ ofdm->sync_counter = 0;
+ next_state = trial;
+ }
+ }
+
+ ofdm->uw_errors = 0;
+ for (i = 0; i < ofdm->nuwbits; i++) {
+ ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i];
+ }
+
+ if (ofdm->sync_state == trial) {
+ if (ofdm->uw_errors < ofdm->bad_uw_errors) {
+ next_state = synced;
+ ofdm->packet_count = 0;
+ ofdm->modem_frame = ofdm->nuwframes;
+ } else {
+ ofdm->sync_counter++;
+
+ if (ofdm->sync_counter > ofdm->np) {
+ next_state = search;
+ }
+ }
+ }
+
+ // Note if frameperburst==0 we don't ever lose sync, which is useful for
+ // stream based testing or external control of state machine
+
+ if (ofdm->sync_state == synced) {
+ ofdm->modem_frame++;
+
+ if (ofdm->modem_frame >= ofdm->np) {
+ ofdm->modem_frame = 0;
+ ofdm->packet_count++;
+ if (ofdm->packetsperburst) {
+ if (ofdm->packet_count >= ofdm->packetsperburst)
+ next_state = search;
+ }
+ }
+
+ }
+
+ ofdm->last_sync_state = ofdm->sync_state;
+ ofdm->sync_state = next_state;
+}
+
+/*
+ * data (burst mode) state machine
+ */
+void ofdm_sync_state_machine_data_burst(struct OFDM *ofdm, uint8_t *rx_uw) {
+ State next_state = ofdm->sync_state;
+ int i;
+
+ ofdm->sync_start = ofdm->sync_end = 0;
+
+ if (ofdm->sync_state == search) {
+ if (ofdm->timing_valid != 0) {
+ ofdm->sync_start = true;
+ ofdm->sync_counter = 0;
+ next_state = trial;
+ }
+ }
+
+ ofdm->uw_errors = 0;
+ for (i = 0; i < ofdm->nuwbits; i++) {
+ ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i];
+ }
+
+ /* pre or post-amble has told us this is the start of the packet. Confirm we
+ have a valid frame by checking the UW after the modem frames containing
+ the UW have been received */
+ if (ofdm->sync_state == trial) {
+ ofdm->sync_counter++;
+ if (ofdm->sync_counter == ofdm->nuwframes) {
+ if (ofdm->uw_errors < ofdm->bad_uw_errors) {
+ next_state = synced;
+ ofdm->packet_count = 0;
+ ofdm->modem_frame = ofdm->nuwframes;
+ } else {
+ next_state = search;
+ // reset rxbuf to make sure we only ever do a postamble loop once through same samples
+ ofdm->rxbufst = ofdm->nrxbufhistory;
+ for(int i=0; i<ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0;
+ ofdm->uw_fails++;
+ }
+ }
+ }
+
+ if (ofdm->sync_state == synced) {
+ ofdm->modem_frame++;
+ if (ofdm->modem_frame >= ofdm->np) {
+ ofdm->modem_frame = 0;
+ ofdm->packet_count++;
+ if (ofdm->packetsperburst) {
+ if (ofdm->packet_count >= ofdm->packetsperburst) {
+ next_state = search;
+ // reset rxbuf to make sure we only ever do a postamble loop once through same samples
+ ofdm->rxbufst = ofdm->nrxbufhistory;
+ for(int i=0; i<ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0;
+ }
+ }
+ }
+ }
+
+ ofdm->last_sync_state = ofdm->sync_state;
+ ofdm->sync_state = next_state;
+}
+
+
+void ofdm_sync_state_machine_voice2(struct OFDM *ofdm, uint8_t *rx_uw) {
+ int i;
+
+ State next_state = ofdm->sync_state;
+
+ ofdm->sync_start = false;
+ ofdm->sync_end = false;
+
+ if (ofdm->sync_state == search) {
+ if (ofdm->timing_valid) {
+ ofdm->frame_count = 0;
+ ofdm->sync_counter = 0;
+ ofdm->sync_start = true;
+ ofdm->clock_offset_counter = 0;
+ next_state = trial;
+ }
+ }
+
+ if ((ofdm->sync_state == synced) || (ofdm->sync_state == trial)) {
+ ofdm->frame_count++;
+
+ ofdm->uw_errors = 0;
+ for (i = 0; i < ofdm->nuwbits; i++) {
+ ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i];
+ }
+
+ if (ofdm->sync_state == trial) {
+ if (ofdm->uw_errors <= ofdm->bad_uw_errors)
+ next_state = synced;
+ else
+ next_state = search;
+ }
+
+ if (ofdm->sync_state == synced) {
+ if (ofdm->uw_errors > ofdm->bad_uw_errors) {
+ ofdm->sync_counter++;
+ } else {
+ ofdm->sync_counter = 0;
+ }
+
+ if (ofdm->sync_counter == 6) {
+ /* run of consecutive bad frames ... drop sync */
+ next_state = search;
+ }
+ }
+ }
+
+ ofdm->last_sync_state = ofdm->sync_state;
+ ofdm->sync_state = next_state;
+}
+
+
+/* mode based dispatcher for sync state machines */
+void ofdm_sync_state_machine(struct OFDM *ofdm, uint8_t *rx_uw) {
+ if (!strcmp(ofdm->state_machine, "voice1"))
+ ofdm_sync_state_machine_voice1(ofdm, rx_uw);
+ if (!strcmp(ofdm->state_machine, "data")) {
+ if (strcmp(ofdm->data_mode,"streaming") == 0)
+ ofdm_sync_state_machine_data_streaming(ofdm, rx_uw);
+ else
+ ofdm_sync_state_machine_data_burst(ofdm, rx_uw);
+ }
+ if (!strcmp(ofdm->state_machine, "voice2"))
+ ofdm_sync_state_machine_voice2(ofdm, rx_uw);
+}
+
+
+/*---------------------------------------------------------------------------* \
+
+ FUNCTIONS...: ofdm_set_sync
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2018
+
+ External control of sync state machine.
+ Ensure this is called in the same thread as ofdm_sync_state_machine().
+
+\*---------------------------------------------------------------------------*/
+
+void ofdm_set_sync(struct OFDM *ofdm, int sync_cmd) {
+ assert(ofdm != NULL);
+
+ switch (sync_cmd) {
+ case UN_SYNC:
+ /* force manual unsync, which will cause sync state machine to
+ have re-attempt sync */
+ ofdm->sync_state = search;
+ /* clear rxbuf so we don't try to sync on any existing OFDM signals
+ in buffer */
+ for (int i = 0; i < ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0.0f;
+ break;
+ case AUTO_SYNC:
+ /* normal operating mode - sync state machine decides when to unsync */
+ ofdm->sync_mode = autosync;
+ break;
+ case MANUAL_SYNC:
+ /*
+ * allow sync state machine to sync, but not to unsync, the
+ * operator will decide that manually
+ */
+ ofdm->sync_mode = manualsync;
+ break;
+ default:
+ assert(0);
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: ofdm_get_demod_stats()
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2018
+
+ Fills stats structure with a bunch of demod information. Call once per
+ packet.
+
+\*---------------------------------------------------------------------------*/
+
+void ofdm_get_demod_stats(struct OFDM *ofdm, struct MODEM_STATS *stats, complex float *rx_syms, int Nsymsperpacket) {
+ stats->Nc = ofdm->nc;
+ assert(stats->Nc <= MODEM_STATS_NC_MAX);
+
+ float EsNodB = ofdm_esno_est_calc(rx_syms, Nsymsperpacket);
+ float SNR3kdB = ofdm_snr_from_esno(ofdm, EsNodB);
+
+ if (strlen(ofdm->data_mode))
+ /* no smoothing as we have a large number of symbols per packet */
+ stats->snr_est = SNR3kdB;
+ else {
+ /* in voice modes we further smooth SNR est, fast attack, slow decay */
+ if (SNR3kdB > stats->snr_est)
+ stats->snr_est = SNR3kdB;
+ else
+ stats->snr_est = 0.9f * stats->snr_est + 0.1f * SNR3kdB;
+ }
+ stats->sync = ((ofdm->sync_state == synced) || (ofdm->sync_state == trial));
+ stats->foff = ofdm->foff_est_hz;
+ stats->rx_timing = ofdm->timing_est;
+
+ float total = ofdm->frame_count * ofdm->samplesperframe;
+ stats->clock_offset = 0;
+ if (total != 0.0f) {
+ stats->clock_offset = ofdm->clock_offset_counter / total;
+ }
+
+ stats->sync_metric = ofdm->timing_mx;
+ stats->pre = ofdm->pre;
+ stats->post = ofdm->post;
+ stats->uw_fails = ofdm->uw_fails;
+
+#ifndef __EMBEDDED__
+ assert(Nsymsperpacket % ofdm->nc == 0);
+ int Nrowsperpacket = Nsymsperpacket/ofdm->nc;
+ assert(Nrowsperpacket <= MODEM_STATS_NR_MAX);
+ stats->nr = Nrowsperpacket;
+ for (int c = 0; c < ofdm->nc; c++) {
+ for (int r = 0; r < Nrowsperpacket; r++) {
+ complex float rot = rx_syms[r * ofdm->nc + c] * cmplx(ROT45);
+ stats->rx_symbols[r][c].real = crealf(rot);
+ stats->rx_symbols[r][c].imag = cimagf(rot);
+ }
+ }
+#endif
+}
+
+/*
+ * Assemble packet of bits from UW, payload bits, and txt bits
+ */
+void ofdm_assemble_qpsk_modem_packet(struct OFDM *ofdm, uint8_t modem_frame[],
+ uint8_t payload_bits[], uint8_t txt_bits[]) {
+ int s, t;
+
+ int p = 0;
+ int u = 0;
+
+ for (s = 0; s < (ofdm->bitsperpacket - ofdm->ntxtbits); s++) {
+ if ((u < ofdm->nuwbits) && (s == ofdm->uw_ind[u])) {
+ modem_frame[s] = ofdm->tx_uw[u++];
+ } else {
+ modem_frame[s] = payload_bits[p++];
+ }
+ }
+
+ assert(u == ofdm->nuwbits);
+ assert(p == (ofdm->bitsperpacket - ofdm->nuwbits - ofdm->ntxtbits));
+
+ for (t = 0; s < ofdm->bitsperframe; s++, t++) {
+ modem_frame[s] = txt_bits[t];
+ }
+
+ assert(t == ofdm->ntxtbits);
+}
+
+/*
+ * Assemble packet of symbols from UW, payload symbols, and txt bits
+ */
+void ofdm_assemble_qpsk_modem_packet_symbols(struct OFDM *ofdm, complex float modem_packet[],
+ COMP payload_syms[], uint8_t txt_bits[]) {
+ complex float *payload = (complex float *) &payload_syms[0]; // complex has same memory layout
+ int Nsymsperpacket = ofdm->bitsperpacket / ofdm->bps;
+ int Nuwsyms = ofdm->nuwbits / ofdm->bps;
+ int Ntxtsyms = ofdm->ntxtbits / ofdm->bps;
+ int dibit[2];
+ int s, t;
+
+ int p = 0;
+ int u = 0;
+
+ assert(ofdm->bps == 2); /* this only works for QPSK at this stage (e.g. modem packet mod) */
+
+ for (s = 0; s < (Nsymsperpacket - Ntxtsyms); s++) {
+ if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) {
+ modem_packet[s] = ofdm->tx_uw_syms[u++];
+ } else {
+ modem_packet[s] = payload[p++];
+ }
+ }
+
+ assert(u == Nuwsyms);
+ assert(p == (Nsymsperpacket - Nuwsyms - Ntxtsyms));
+
+ for (t = 0; s < Nsymsperpacket; s++, t += 2) {
+ dibit[1] = txt_bits[t ] & 0x1;
+ dibit[0] = txt_bits[t + 1] & 0x1;
+ modem_packet[s] = qpsk_mod(dibit);
+ }
+
+ assert(t == ofdm->ntxtbits);
+}
+
+/*
+ * Disassemble a received packet of symbols into UW bits and payload data symbols
+ */
+void ofdm_disassemble_qpsk_modem_packet(struct OFDM *ofdm, complex float rx_syms[], float rx_amps[],
+ COMP codeword_syms[], float codeword_amps[], short txt_bits[])
+{
+ complex float *codeword = (complex float *) &codeword_syms[0]; // complex has same memory layout
+ int Nsymsperpacket = ofdm->bitsperpacket / ofdm->bps;
+ int Nuwsyms = ofdm->nuwbits / ofdm->bps;
+ int Ntxtsyms = ofdm->ntxtbits / ofdm->bps;
+ int dibit[2];
+ int s, t;
+
+ int p = 0;
+ int u = 0;
+
+ assert(ofdm->bps == 2); /* this only works for QPSK at this stage */
+
+ for (s = 0; s < (Nsymsperpacket - Ntxtsyms); s++) {
+ if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) {
+ u++;
+ } else {
+ codeword[p] = rx_syms[s];
+ codeword_amps[p] = rx_amps[s];
+ p++;
+ }
+ }
+
+ assert(u == Nuwsyms);
+ assert(p == (Nsymsperpacket - Nuwsyms - Ntxtsyms));
+
+ for (t = 0; s < Nsymsperpacket; s++, t += 2) {
+ qpsk_demod(rx_syms[s], dibit);
+
+ txt_bits[t ] = dibit[1];
+ txt_bits[t + 1] = dibit[0];
+ }
+
+ assert(t == ofdm->ntxtbits);
+}
+
+/*
+ * Disassemble a received packet of symbols into UW bits and payload data symbols
+ */
+void ofdm_disassemble_qpsk_modem_packet_with_text_amps(
+ struct OFDM *ofdm, complex float rx_syms[], float rx_amps[],
+ COMP codeword_syms[], float codeword_amps[], short txt_bits[],
+ int* textIndex)
+{
+ complex float *codeword = (complex float *) &codeword_syms[0]; // complex has same memory layout
+ int Nsymsperpacket = ofdm->bitsperpacket / ofdm->bps;
+ int Nuwsyms = ofdm->nuwbits / ofdm->bps;
+ int Ntxtsyms = ofdm->ntxtbits / ofdm->bps;
+ int dibit[2];
+ int s, t;
+
+ int p = 0;
+ int u = 0;
+
+ assert(ofdm->bps == 2); /* this only works for QPSK at this stage */
+ assert(textIndex != NULL);
+
+ for (s = 0; s < (Nsymsperpacket - Ntxtsyms); s++) {
+ if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) {
+ u++;
+ } else {
+ codeword[p] = rx_syms[s];
+ codeword_amps[p] = rx_amps[s];
+ p++;
+ }
+ }
+
+ assert(u == Nuwsyms);
+ assert(p == (Nsymsperpacket - Nuwsyms - Ntxtsyms));
+
+ *textIndex = s;
+ for (t = 0; s < Nsymsperpacket; s++, t += 2) {
+ qpsk_demod(rx_syms[s], dibit);
+
+ txt_bits[t ] = dibit[1];
+ txt_bits[t + 1] = dibit[0];
+ }
+
+ assert(t == ofdm->ntxtbits);
+}
+
+/*
+ * Extract just the UW from the packet
+ */
+void ofdm_extract_uw(struct OFDM *ofdm, complex float rx_syms[], float rx_amps[], uint8_t rx_uw[]) {
+ int Nsymsperframe = ofdm->bitsperframe / ofdm->bps;
+ int Nuwsyms = ofdm->nuwbits / ofdm->bps;
+ int dibit[2];
+ int s,u;
+
+ assert(ofdm->bps == 2); /* this only works for QPSK at this stage (e.g. UW demod) */
+
+ for (s = 0, u = 0; s < Nsymsperframe*ofdm->nuwframes; s++) {
+ if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) {
+ qpsk_demod(rx_syms[s], dibit);
+ rx_uw[2 * u ] = dibit[1];
+ rx_uw[2 * u + 1] = dibit[0];
+ u++;
+ }
+ }
+
+ assert(u == Nuwsyms);
+}
+
+/*
+ * Pseudo-random number generator that we can implement in C with
+ * identical results to Octave. Returns an unsigned int between 0
+ * and 32767. Used for generating test frames of various lengths.
+ */
+void ofdm_rand(uint16_t r[], int n) {
+ ofdm_rand_seed(r, n, 1);
+}
+
+void ofdm_rand_seed(uint16_t r[], int n, uint64_t seed) {
+ for (int i = 0; i < n; i++) {
+ seed = (1103515245l * seed + 12345) % 32768;
+ r[i] = seed;
+ }
+}
+
+void ofdm_generate_payload_data_bits(uint8_t payload_data_bits[], int n) {
+ uint16_t r[n];
+ int i;
+
+ ofdm_rand(r, n);
+
+ for (i = 0; i < n; i++) {
+ payload_data_bits[i] = r[i] > 16384;
+ }
+}
+
+void ofdm_generate_preamble(struct OFDM *ofdm, COMP *tx_preamble, int seed) {
+ // need to modify bits per packet to set up pre-amble of a few modem frames in length
+ struct OFDM ofdm_preamble;
+ memcpy(&ofdm_preamble, ofdm, sizeof(struct OFDM));
+ ofdm_preamble.np = 1;
+ ofdm_preamble.bitsperpacket = ofdm_preamble.bitsperframe;
+ uint16_t r[ofdm_preamble.bitsperpacket];
+ ofdm_rand_seed(r, ofdm_preamble.bitsperpacket, seed);
+ int preamble_bits[ofdm_preamble.bitsperpacket];
+ for(int i=0; i<ofdm_preamble.bitsperpacket; i++)
+ preamble_bits[i] = r[i] > 16384;
+ // ensures the signal passes through hilbert clipper unchanged
+ ofdm_preamble.amp_scale = 1.0;
+ ofdm_preamble.tx_bpf_en = false;
+ ofdm_preamble.clip_en = false;
+ ofdm_mod(&ofdm_preamble, tx_preamble, preamble_bits);
+}
+
+void ofdm_print_info(struct OFDM *ofdm) {
+ char *syncmode[] = {
+ "unsync",
+ "autosync",
+ "manualsync"
+ };
+ char *phase_est_bandwidth_mode[] = {
+ "auto",
+ "locked_high"
+ };
+
+ fprintf(stderr, "ofdm->tx_centre = %g\n", (double)ofdm->tx_centre);
+ fprintf(stderr, "ofdm->rx_centre = %g\n", (double)ofdm->rx_centre);
+ fprintf(stderr, "ofdm->fs = %g\n", (double)ofdm->fs);
+ fprintf(stderr, "ofdm->ts = %g\n", (double)ofdm->ts);
+ fprintf(stderr, "ofdm->rs = %g\n", (double)ofdm->rs);
+ fprintf(stderr, "ofdm->tcp = %g\n", (double)ofdm->tcp);
+ fprintf(stderr, "ofdm->inv_m = %g\n", (double)ofdm->inv_m);
+ fprintf(stderr, "ofdm->tx_nlower = %g\n", (double)ofdm->tx_nlower);
+ fprintf(stderr, "ofdm->rx_nlower = %g\n", (double)ofdm->rx_nlower);
+ fprintf(stderr, "ofdm->doc = %g\n", (double)ofdm->doc);
+ fprintf(stderr, "ofdm->timing_mx_thresh = %g\n", (double)ofdm->timing_mx_thresh);
+ fprintf(stderr, "ofdm->nc = %d\n", ofdm->nc);
+ fprintf(stderr, "ofdm->np = %d\n", ofdm->np);
+ fprintf(stderr, "ofdm->ns = %d\n", ofdm->ns);
+ fprintf(stderr, "ofdm->bps = %d\n", ofdm->bps);
+ fprintf(stderr, "ofdm->m = %d\n", ofdm->m);
+ fprintf(stderr, "ofdm->ncp = %d\n", ofdm->ncp);
+ fprintf(stderr, "ofdm->ftwindowwidth = %d\n", ofdm->ftwindowwidth);
+ fprintf(stderr, "ofdm->bitsperframe = %d\n", ofdm->bitsperframe);
+ fprintf(stderr, "ofdm->bitsperpacket = %d\n", ofdm->bitsperpacket);
+ fprintf(stderr, "ofdm->rowsperframe = %d\n", ofdm->rowsperframe);
+ fprintf(stderr, "ofdm->samplespersymbol = %d\n", ofdm->samplespersymbol);
+ fprintf(stderr, "ofdm->samplesperframe = %d\n", ofdm->samplesperframe);
+ fprintf(stderr, "ofdm->max_samplesperframe = %d\n", ofdm->max_samplesperframe);
+ fprintf(stderr, "ofdm->nrxbuf = %d\n", ofdm->nrxbuf);
+ fprintf(stderr, "ofdm->ntxtbits = %d\n", ofdm->ntxtbits);
+ fprintf(stderr, "ofdm->nuwbits = %d\n", ofdm->nuwbits);
+ fprintf(stderr, "ofdm->foff_est_gain = %g\n", (double)ofdm->foff_est_gain);
+ fprintf(stderr, "ofdm->foff_est_hz = %g\n", (double)ofdm->foff_est_hz);
+ fprintf(stderr, "ofdm->timing_mx = %g\n", (double)ofdm->timing_mx);
+ fprintf(stderr, "ofdm->coarse_foff_est_hz = %g\n", (double)ofdm->coarse_foff_est_hz);
+ fprintf(stderr, "ofdm->timing_norm = %g\n", (double)ofdm->timing_norm);
+ fprintf(stderr, "ofdm->mean_amp = %g\n", (double)ofdm->mean_amp);
+ fprintf(stderr, "ofdm->clock_offset_counter = %d\n", ofdm->clock_offset_counter);
+ fprintf(stderr, "ofdm->verbose = %d\n", ofdm->verbose);
+ fprintf(stderr, "ofdm->sample_point = %d\n", ofdm->sample_point);
+ fprintf(stderr, "ofdm->timing_est = %d\n", ofdm->timing_est);
+ fprintf(stderr, "ofdm->timing_valid = %d\n", ofdm->timing_valid);
+ fprintf(stderr, "ofdm->nin = %d\n", ofdm->nin);
+ fprintf(stderr, "ofdm->uw_errors = %d\n", ofdm->uw_errors);
+ fprintf(stderr, "ofdm->sync_counter = %d\n", ofdm->sync_counter);
+ fprintf(stderr, "ofdm->frame_count = %d\n", ofdm->frame_count);
+ fprintf(stderr, "ofdm->sync_start = %s\n", ofdm->sync_start ? "true" : "false");
+ fprintf(stderr, "ofdm->sync_end = %s\n", ofdm->sync_end ? "true" : "false");
+ fprintf(stderr, "ofdm->sync_mode = %s\n", syncmode[ofdm->sync_mode]);
+ fprintf(stderr, "ofdm->timing_en = %s\n", ofdm->timing_en ? "true" : "false");
+ fprintf(stderr, "ofdm->foff_est_en = %s\n", ofdm->foff_est_en ? "true" : "false");
+ fprintf(stderr, "ofdm->phase_est_en = %s\n", ofdm->phase_est_en ? "true" : "false");
+ fprintf(stderr, "ofdm->tx_bpf_en = %s\n", ofdm->tx_bpf_en ? "true" : "false");
+ fprintf(stderr, "ofdm->rx_bpf_en = %s\n", ofdm->rx_bpf_en ? "true" : "false");
+ fprintf(stderr, "ofdm->dpsk_en = %s\n", ofdm->dpsk_en ? "true" : "false");
+ fprintf(stderr, "ofdm->phase_est_bandwidth_mode = %s\n", phase_est_bandwidth_mode[ofdm->phase_est_bandwidth_mode]);
+}
+
+// hilbert clipper
+void ofdm_clip(complex float tx[], float clip_thresh, int n) {
+ complex float sam;
+ float mag;
+ int i;
+
+ for(i=0; i<n; i++) {
+ sam = tx[i];
+ mag = cabsf(sam);
+ if (mag > clip_thresh) {
+ sam *= clip_thresh/mag;
+ }
+ tx[i] = sam;
+ }
+ }