diff options
Diffstat (limited to 'src/ofdm.c')
| -rw-r--r-- | src/ofdm.c | 2628 |
1 files changed, 2628 insertions, 0 deletions
diff --git a/src/ofdm.c b/src/ofdm.c new file mode 100644 index 0000000..552196c --- /dev/null +++ b/src/ofdm.c @@ -0,0 +1,2628 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: ofdm.c + AUTHORS.....: David Rowe & Steve Sampson + DATE CREATED: June 2017 + + A Library of functions that implement a PSK OFDM modem, C port of + the Octave functions in ofdm_lib.m + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2017-2020 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +#include <stdio.h> +#include <stdlib.h> +#include <stdbool.h> +#include <stdint.h> +#include <string.h> +#include <math.h> +#include <assert.h> +#include <complex.h> + +#include "comp.h" +#include "ofdm_internal.h" +#include "codec2_ofdm.h" +#include "filter.h" +#include "wval.h" +#include "debug_alloc.h" +#include "machdep.h" + +#ifdef __EMBEDDED__ +#include "codec2_math.h" +#endif /* __EMBEDDED__ */ + +/* Static Prototypes */ + +static float cnormf(complex float); +static void allocate_tx_bpf(struct OFDM *); +static void deallocate_tx_bpf(struct OFDM *); +static float find_carrier_centre(struct OFDM *ofdm); +static void allocate_rx_bpf(struct OFDM *); +static void deallocate_rx_bpf(struct OFDM *); +static void dft(struct OFDM *, complex float *, complex float *); +static void idft(struct OFDM *, complex float *, complex float *); +static complex float vector_sum(complex float *, int); +static int est_timing(struct OFDM *, complex float *, int, int, float *, int *, int); +static float est_freq_offset_pilot_corr(struct OFDM *, complex float *, int, int); +static int ofdm_sync_search_core(struct OFDM *); +static void ofdm_demod_core(struct OFDM *, int *); + +/* Defines */ + +#define max( a, b ) ( ((a) > (b)) ? (a) : (b) ) +#define min( a, b ) ( ((a) < (b)) ? (a) : (b) ) + +/* + * QPSK Quadrant bit-pair values - Gray Coded + */ +static const complex float qpsk[] = { + 1.0f + 0.0f * I, + 0.0f + 1.0f * I, + 0.0f - 1.0f * I, + -1.0f + 0.0f * I +}; + +static const complex float qam16[] = { + 1.0f + 1.0f * I, + 1.0f + 3.0f * I, + 3.0f + 1.0f * I, + 3.0f + 3.0f * I, + 1.0f - 1.0f * I, + 1.0f - 3.0f * I, + 3.0f - 1.0f * I, + 3.0f - 3.0f * I, + -1.0f + 1.0f * I, + -1.0f + 3.0f * I, + -3.0f + 1.0f * I, + -3.0f + 3.0f * I, + -1.0f - 1.0f * I, + -1.0f - 3.0f * I, + -3.0f - 1.0f * I, + -3.0f - 3.0f * I +}; + +/* + * These pilots are compatible with Octave version + */ +static const int8_t pilotvalues[] = { + -1,-1, 1, 1,-1,-1,-1, 1, + -1, 1,-1, 1, 1, 1, 1, 1, + 1, 1, 1,-1,-1, 1,-1, 1, + -1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1,-1, 1, 1, 1, 1, + 1,-1,-1,-1,-1,-1,-1, 1, + -1, 1,-1, 1,-1,-1, 1,-1, + 1, 1, 1, 1,-1, 1,-1, 1 +}; + +/* Local Functions ----------------------------------------------------------*/ + +static float cnormf(complex float val) { + float realf = crealf(val); + float imagf = cimagf(val); + + return realf * realf + imagf * imagf; +} + +/* + * Gray coded QPSK modulation function + */ +complex float qpsk_mod(int *bits) { + return qpsk[(bits[1] << 1) | bits[0]]; +} + +/* + * Gray coded QPSK demodulation function + * + * 01 | 00 + * ---+--- + * 11 | 10 + */ +void qpsk_demod(complex float symbol, int *bits) { + complex float rotate = symbol * cmplx(ROT45); + + bits[0] = crealf(rotate) <= 0.0f; + bits[1] = cimagf(rotate) <= 0.0f; +} + +complex float qam16_mod(int *bits) { + return qam16[ + (bits[3] << 3) | (bits[2] << 2) | + (bits[1] << 1) | bits[0] + ]; +} + +void qam16_demod(complex float symbol, int *bits) { + float dist[16]; + int i; + + for (i = 0; i < 16; i++) { + dist[i] = cnormf(symbol - qam16[i]); + } + + int row = 0; + float mdist = 10000.0f; + + for (i = 0; i < 16; i++) { + if (dist[i] < mdist) { + mdist = dist[i]; + row = i; + } + } + + bits[0] = row & 1; + bits[1] = (row >> 1) & 1; + bits[2] = (row >> 2) & 1; + bits[3] = (row >> 3) & 1; +} + +/* + * ------------ + * ofdm_create + * ------------ + * + * Returns OFDM data structure on success + * Return NULL on fail + * + * If you want the defaults, call this with config structure + * and the NC setting to 0. This will fill the structure with + * default values of the original OFDM modem. + */ +struct OFDM *ofdm_create(const struct OFDM_CONFIG *config) { + struct OFDM *ofdm; + float tval; + int i, j; + + ofdm = (struct OFDM *) CALLOC(1, sizeof (struct OFDM)); + assert(ofdm != NULL); + + if (config == NULL) { + /* Fill in default values */ + + strcpy(ofdm->mode, "700D"); + ofdm->nc = 17; /* Number of carriers */ + ofdm->np = 1; + ofdm->ns = 8; /* Number of Symbols per modem frame */ + ofdm->ts = 0.018f; + ofdm->rs = (1.0f / ofdm->ts); /* Modulation Symbol Rate */ + ofdm->tcp = .002f; /* Cyclic Prefix duration */ + ofdm->tx_centre = 1500.0f; /* TX Carrier Frequency */ + ofdm->rx_centre = 1500.0f; /* RX Carrier Frequency */ + ofdm->fs = 8000.0f; /* Sample rate */ + ofdm->ntxtbits = 4; + ofdm->bps = 2; /* Bits per Symbol */ + ofdm->nuwbits = 5 * ofdm->bps; /* default is 5 symbols of Unique Word bits */ + ofdm->bad_uw_errors = 3; + ofdm->ftwindowwidth = 32; + ofdm->timing_mx_thresh = 0.30f; + ofdm->state_machine = "voice1"; + ofdm->edge_pilots = 1; + ofdm->codename = "HRA_112_112"; + ofdm->amp_est_mode = 0; + ofdm->tx_bpf_en = true; + ofdm->rx_bpf_en = false; + ofdm->amp_scale = 245E3; + ofdm->clip_gain1 = 2.0; + ofdm->clip_gain2 = 0.9; + ofdm->clip_en = false; + ofdm->foff_limiter = false; + ofdm->data_mode = ""; + ofdm->fmin = -50.0; /* frequency minimum for ofdm acquisition range */ + ofdm->fmax = 50.0; /* frequency maximum for ofdm acquisition range */ + memset(ofdm->tx_uw, 0, ofdm->nuwbits); + } else { + /* Use the users values */ + + + strcpy(ofdm->mode, config->mode); + ofdm->nc = config->nc; /* Number of carriers */ + ofdm->np = config->np; /* Number of modem Frames per Packet */ + ofdm->ns = config->ns; /* Number of Symbol frames */ + ofdm->bps = config->bps; /* Bits per Symbol */ + ofdm->ts = config->ts; + ofdm->tcp = config->tcp; /* Cyclic Prefix duration */ + ofdm->tx_centre = config->tx_centre; /* TX Centre Audio Frequency */ + ofdm->rx_centre = config->rx_centre; /* RX Centre Audio Frequency */ + ofdm->fs = config->fs; /* Sample Frequency */ + ofdm->rs = config->rs; /* Symbol Rate */ + ofdm->ntxtbits = config->txtbits; + ofdm->nuwbits = config->nuwbits; + ofdm->bad_uw_errors = config->bad_uw_errors; + ofdm->ftwindowwidth = config->ftwindowwidth; + ofdm->timing_mx_thresh = config->timing_mx_thresh; + ofdm->state_machine = config->state_machine; + ofdm->edge_pilots = config->edge_pilots; + ofdm->codename = config->codename; + ofdm->amp_est_mode = config->amp_est_mode; + ofdm->tx_bpf_en = config->tx_bpf_en; + ofdm->rx_bpf_en = config->rx_bpf_en; + ofdm->foff_limiter = config->foff_limiter; + ofdm->amp_scale = config->amp_scale; + ofdm->clip_gain1 = config->clip_gain1; + ofdm->clip_gain2 = config->clip_gain2; + ofdm->clip_en = config->clip_en; + memcpy(ofdm->tx_uw, config->tx_uw, ofdm->nuwbits); + ofdm->data_mode = config->data_mode; + ofdm->fmin = config->fmin; /* frequency minimum for ofdm acquisition range */ + ofdm->fmax = config->fmax; /* frequency maximum for ofdm acquisition range */ + + } + + ofdm->rs = (1.0f / ofdm->ts); /* Modulation Symbol Rate */ + ofdm->m = (int) (ofdm->fs / ofdm->rs); /* 700D: 144 */ + ofdm->ncp = (int) (ofdm->tcp * ofdm->fs); /* 700D: 16 */ + ofdm->inv_m = (1.0f / (float) ofdm->m); + + /* basic sanity checks */ + assert((int)floorf(ofdm->fs / ofdm->rs) == ofdm->m); + assert(!strcmp(ofdm->state_machine, "voice1") || + !strcmp(ofdm->state_machine, "data") || + !strcmp(ofdm->state_machine, "voice2")); + assert(ofdm->nuwbits <= MAX_UW_BITS); + + /* Copy constants into states */ + + strcpy(ofdm->config.mode, ofdm->mode); + ofdm->config.tx_centre = ofdm->tx_centre; + ofdm->config.rx_centre = ofdm->rx_centre; + ofdm->config.fs = ofdm->fs; + ofdm->config.rs = ofdm->rs; + ofdm->config.ts = ofdm->ts; + ofdm->config.tcp = ofdm->tcp; + ofdm->config.timing_mx_thresh = ofdm->timing_mx_thresh; + ofdm->config.nc = ofdm->nc; + ofdm->config.ns = ofdm->ns; + ofdm->config.np = ofdm->np; + ofdm->config.bps = ofdm->bps; + ofdm->config.nuwbits = ofdm->nuwbits; + ofdm->config.txtbits = ofdm->ntxtbits; + ofdm->config.bad_uw_errors = ofdm->bad_uw_errors; + ofdm->config.ftwindowwidth = ofdm->ftwindowwidth; + ofdm->config.state_machine = ofdm->state_machine; + ofdm->config.edge_pilots = ofdm->edge_pilots; + ofdm->config.codename = ofdm->codename; + ofdm->config.amp_est_mode = ofdm->amp_est_mode; + ofdm->config.tx_bpf_en = ofdm->tx_bpf_en; + ofdm->config.rx_bpf_en = ofdm->rx_bpf_en; + ofdm->config.foff_limiter = ofdm->foff_limiter; + ofdm->config.amp_scale = ofdm->amp_scale; + ofdm->config.clip_gain1 = ofdm->clip_gain1; + ofdm->config.clip_gain2 = ofdm->clip_gain2; + ofdm->config.clip_en = ofdm->clip_en; + memcpy(ofdm->config.tx_uw, ofdm->tx_uw, ofdm->nuwbits); + ofdm->config.data_mode = ofdm->data_mode; + ofdm->config.fmin = ofdm->fmin; + ofdm->config.fmax = ofdm->fmax; + + + /* Calculate sizes from config param */ + + ofdm->bitsperframe = (ofdm->ns - 1) * (ofdm->nc * ofdm->bps); // 238 for nc = 17 + ofdm->bitsperpacket = ofdm->np * ofdm->bitsperframe; + ofdm->tpacket = (float)(ofdm->np * ofdm->ns) * (ofdm->tcp + ofdm->ts); /* time for one packet */ + ofdm->rowsperframe = ofdm->bitsperframe / (ofdm->nc * ofdm->bps); + ofdm->samplespersymbol = (ofdm->m + ofdm->ncp); + ofdm->samplesperframe = ofdm->ns * ofdm->samplespersymbol; + if (*ofdm->data_mode != 0) + // in burst data modes we skip ahead one frame to jump over preamble + ofdm->max_samplesperframe = 2*ofdm->samplesperframe; + else + ofdm->max_samplesperframe = ofdm->samplesperframe + (ofdm->samplespersymbol / 4); + /* extra storage at start of rxbuf to allow us to step back in time */ + if (strlen(ofdm->data_mode)) + ofdm->nrxbufhistory = (ofdm->np+2)*ofdm->samplesperframe; + else + ofdm->nrxbufhistory = 0; + ofdm->rxbufst = ofdm->nrxbufhistory; + ofdm->nrxbufmin = 3*ofdm->samplesperframe + 3*ofdm->samplespersymbol; + ofdm->nrxbuf = ofdm->nrxbufhistory + ofdm->nrxbufmin; + + ofdm->pilot_samples = (complex float *) MALLOC(sizeof (complex float) * ofdm->samplespersymbol); + assert(ofdm->pilot_samples != NULL); + + ofdm->rxbuf = (complex float *) MALLOC(sizeof (complex float) * ofdm->nrxbuf); + assert(ofdm->rxbuf != NULL); + for(int i=0; i<ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0; + + ofdm->pilots = (complex float *) MALLOC(sizeof (complex float) * (ofdm->nc + 2)); + assert(ofdm->pilots != NULL); + + /* + * rx_sym is a 2D array of variable size + * + * allocate rx_sym row storage. It is a pointer to a pointer + */ + ofdm->rx_sym = MALLOC(sizeof (complex float) * (ofdm->ns + 3)); + assert(ofdm->rx_sym != NULL); + + /* allocate rx_sym column storage */ + + for (i = 0; i < (ofdm->ns + 3); i++) { + ofdm->rx_sym[i] = (complex float *) MALLOC(sizeof(complex float) * (ofdm->nc + 2)); + assert(ofdm->rx_sym[i] != NULL); + } + + /* The rest of these are 1D arrays of variable size */ + + ofdm->rx_np = MALLOC(sizeof (complex float) * (ofdm->rowsperframe * ofdm->nc)); + assert(ofdm->rx_np != NULL); + + ofdm->rx_amp = MALLOC(sizeof (float) * (ofdm->rowsperframe * ofdm->nc)); + assert(ofdm->rx_amp != NULL); + + ofdm->aphase_est_pilot_log = MALLOC(sizeof (float) * (ofdm->rowsperframe * ofdm->nc)); + assert(ofdm->aphase_est_pilot_log != NULL); + + /* store complex BPSK pilot symbols */ + + assert(sizeof (pilotvalues) >= (ofdm->nc + 2) * sizeof (int8_t)); + + /* There are only 64 pilot values available */ + + for (i = 0; i < (ofdm->nc + 2); i++) { + ofdm->pilots[i] = ((float) pilotvalues[i]) + 0.0f * I; + } + if (ofdm->edge_pilots == 0) { + ofdm->pilots[0] = ofdm->pilots[ofdm->nc + 1] = 0.0f; + } + /* carrier tables for up and down conversion */ + + ofdm->doc = (TAU / (ofdm->fs / ofdm->rs)); + tval = ((float) ofdm->nc / 2.0f); + ofdm->tx_nlower = roundf((ofdm->tx_centre / ofdm->rs) - tval) - 1.0f; + ofdm->rx_nlower = roundf((ofdm->rx_centre / ofdm->rs) - tval) - 1.0f; + + /* Tx and Rx band pass filters */ + ofdm->tx_bpf = NULL; + if (ofdm->tx_bpf_en) + allocate_tx_bpf(ofdm); + ofdm->rx_bpf = NULL; + if (ofdm->rx_bpf_en) + allocate_rx_bpf(ofdm); + + for (i = 0; i < ofdm->nrxbuf; i++) { + ofdm->rxbuf[i] = 0.0f; + } + + for (i = 0; i < (ofdm->ns + 3); i++) { + for (j = 0; j < (ofdm->nc + 2); j++) { + ofdm->rx_sym[i][j] = 0.0f; + } + } + + for (i = 0; i < ofdm->rowsperframe * ofdm->nc; i++) { + ofdm->rx_np[i] = 0.0f; + } + + for (i = 0; i < ofdm->rowsperframe; i++) { + for (j = 0; j < ofdm->nc; j++) { + ofdm->aphase_est_pilot_log[ofdm->nc * i + j] = 0.0f; + ofdm->rx_amp[ofdm->nc * i + j] = 0.0f; + } + } + + /* default settings of options and states */ + + ofdm->verbose = 0; + ofdm->timing_en = true; + ofdm->foff_est_en = true; + ofdm->phase_est_en = true; + ofdm->phase_est_bandwidth = high_bw; + ofdm->phase_est_bandwidth_mode = AUTO_PHASE_EST; + ofdm->packetsperburst = 0; // default: never lose syn in raw data mode + + ofdm->coarse_foff_est_hz = 0.0f; + ofdm->foff_est_gain = 0.1f; + ofdm->foff_est_hz = 0.0f; + ofdm->sample_point = 0; + ofdm->timing_est = 0; + ofdm->timing_valid = 0; + ofdm->timing_mx = 0.0f; + ofdm->nin = ofdm->samplesperframe; + ofdm->mean_amp = 0.0f; + ofdm->foff_metric = 0.0f; + + ofdm->fmin = -50.0f; + ofdm->fmax = 50.0f; + + /* + * Unique Word symbol placement. Note we need to group the UW + * bits so they fit into symbols. The LDPC decoder works on + * symbols so we can't break up any symbols into UW/payload bits. + */ + ofdm->uw_ind = MALLOC(sizeof (int) * ofdm->nuwbits); + assert(ofdm->uw_ind != NULL); + + ofdm->uw_ind_sym = MALLOC(sizeof (int) * (ofdm->nuwbits / ofdm->bps)); + assert(ofdm->uw_ind_sym != NULL); + + /* + * The Unique Word is placed in different indexes based on + * the number of carriers requested. + */ + int nuwsyms = ofdm->nuwbits / ofdm->bps; + int Ndatasymsperframe = (ofdm->ns-1)*ofdm->nc; + int uw_step = ofdm->nc + 1; // default step size + int last_sym = floorf(nuwsyms*uw_step/ofdm->bps); + if (last_sym >= ofdm->np*Ndatasymsperframe) + uw_step = ofdm->nc - 1; // try a different step + last_sym = floorf(nuwsyms*uw_step/ofdm->bps); + assert(last_sym < ofdm->np*Ndatasymsperframe);// bail if we still can't fit them all + + for (i = 0, j = 0; i < nuwsyms; i++, j += ofdm->bps) { + int val = floorf((i + 1) * uw_step / ofdm->bps); + + ofdm->uw_ind_sym[i] = val; // symbol index + + for (int b = 0; b < ofdm->bps ; b++) { + ofdm->uw_ind[j + b] = (val * ofdm->bps) + b; + } + } + + // work out how many frames UW is spread over + int symsperframe = ofdm->bitsperframe / ofdm->bps; + ofdm->nuwframes = (int) ceilf((float)(ofdm->uw_ind_sym[nuwsyms-1]+1)/symsperframe); + + ofdm->tx_uw_syms = MALLOC(sizeof (complex float) * (ofdm->nuwbits / ofdm->bps)); + assert(ofdm->tx_uw_syms != NULL); + + assert(ofdm->bps == 2); // TODO generalise + for (int s = 0; s < (ofdm->nuwbits / ofdm->bps); s++) { + int dibit[2]; + dibit[1] = ofdm->tx_uw[2*s]; + dibit[0] = ofdm->tx_uw[2*s+1]; + ofdm->tx_uw_syms[s] = qpsk_mod(dibit); + } + + /* sync state machine */ + + ofdm->sync_state = search; + ofdm->last_sync_state = search; + + ofdm->uw_errors = 0; + ofdm->sync_counter = 0; + ofdm->frame_count = 0; + ofdm->sync_start = false; + ofdm->sync_end = false; + ofdm->sync_mode = autosync; + ofdm->modem_frame = 0; + + /* create the OFDM pilot time-domain waveform */ + + complex float *temp = MALLOC(sizeof (complex float) * ofdm->m); + assert(temp != NULL); + + idft(ofdm, temp, ofdm->pilots); + + /* + * pilot_samples is 160 samples, but timing and freq offset est + * were found by experiment to work better without a cyclic + * prefix, so we uses zeroes instead. + */ + + /* zero out Cyclic Prefix (CP) time-domain values */ + + for (i = 0; i < ofdm->ncp; i++) { + ofdm->pilot_samples[i] = 0.0f; + } + + /* Now copy the whole thing after the above */ + + for (i = ofdm->ncp, j = 0; j < ofdm->m; i++, j++) { + ofdm->pilot_samples[i] = temp[j]; + } + + FREE(temp); + + /* calculate constant used to normalise timing correlation maximum */ + float acc = 0.0f; + for (i = 0; i < ofdm->samplespersymbol; i++) { + acc += cnormf(ofdm->pilot_samples[i]); + } + + ofdm->timing_norm = ofdm->samplespersymbol * acc; + ofdm->clock_offset_counter = 0; + ofdm->dpsk_en = false; + + if (strlen(ofdm->data_mode)) { + ofdm->tx_preamble = (COMP*)malloc(sizeof(COMP)*ofdm->samplesperframe); + assert(ofdm->tx_preamble != NULL); + ofdm_generate_preamble(ofdm, ofdm->tx_preamble, 2); + ofdm->tx_postamble = (COMP*)malloc(sizeof(COMP)*ofdm->samplesperframe); + assert(ofdm->tx_postamble != NULL); + ofdm_generate_preamble(ofdm, ofdm->tx_postamble, 3); + } + ofdm->postambledetectoren = !strcmp(ofdm->data_mode,"burst"); + + return ofdm; /* Success */ +} + +static void allocate_tx_bpf(struct OFDM *ofdm) { + ofdm->tx_bpf = MALLOC(sizeof(struct quisk_cfFilter)); + assert(ofdm->tx_bpf != NULL); + + /* Transmit bandpass filter; complex coefficients, center frequency */ + + if (!strcmp(ofdm->mode, "700D")) { + quisk_filt_cfInit(ofdm->tx_bpf, filtP650S900, sizeof (filtP650S900) / sizeof (float)); + quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs); + } + else if (!strcmp(ofdm->mode, "700E") || !strcmp(ofdm->mode, "2020") || !strcmp(ofdm->mode, "datac1")) { + quisk_filt_cfInit(ofdm->tx_bpf, filtP900S1100, sizeof (filtP900S1100) / sizeof (float)); + quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs); + } + else if (!strcmp(ofdm->mode, "2020B") || !strcmp(ofdm->mode, "2020C")) { + quisk_filt_cfInit(ofdm->tx_bpf, filtP1100S1300, sizeof (filtP1100S1300) / sizeof (float)); + quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs); + } + else if (!strcmp(ofdm->mode, "datac0") || !strcmp(ofdm->mode, "datac3")) { + quisk_filt_cfInit(ofdm->tx_bpf, filtP400S600, sizeof (filtP400S600) / sizeof (float)); + quisk_cfTune(ofdm->tx_bpf, ofdm->tx_centre / ofdm->fs); + } + else if (!strcmp(ofdm->mode, "datac4") || !strcmp(ofdm->mode, "datac13")) { + quisk_filt_cfInit(ofdm->tx_bpf, filtP200S400, sizeof (filtP200S400) / sizeof (float)); + // centre the filter on the mean carrier freq, allows a narrower filter to be used + float tx_centre = find_carrier_centre(ofdm); + quisk_cfTune(ofdm->tx_bpf, tx_centre / ofdm->fs); + } + else assert(0); +} + +static void deallocate_tx_bpf(struct OFDM *ofdm) { + assert(ofdm->tx_bpf != NULL); + quisk_filt_destroy(ofdm->tx_bpf); + FREE(ofdm->tx_bpf); + ofdm->tx_bpf = NULL; +} + +static float find_carrier_centre(struct OFDM *ofdm) { + float rx_centre = 0.0; + for(int c=0; c<ofdm->nc+2; c++) + rx_centre += (ofdm->rx_nlower + c) * ofdm->doc; + return (ofdm->fs/TAU)*rx_centre/(ofdm->nc+2); +} + +static void allocate_rx_bpf(struct OFDM *ofdm) { + ofdm->rx_bpf = MALLOC(sizeof(struct quisk_cfFilter)); + assert(ofdm->rx_bpf != NULL); + + /* Receive bandpass filter; complex coefficients, center frequency */ + + if (!strcmp(ofdm->mode, "datac4") || !strcmp(ofdm->mode, "datac13")) { + quisk_filt_cfInit(ofdm->rx_bpf, filtP200S400, sizeof (filtP200S400) / sizeof (float)); + // centre the filter on the mean carrier freq, allows a narrower filter to be used + float rx_centre = find_carrier_centre(ofdm); + //fprintf(stderr, " rx_centre: %f\n", rx_centre); + quisk_cfTune(ofdm->rx_bpf, rx_centre / ofdm->fs); + } + else assert(0); +} + +static void deallocate_rx_bpf(struct OFDM *ofdm) { + assert(ofdm->rx_bpf != NULL); + quisk_filt_destroy(ofdm->rx_bpf); + FREE(ofdm->rx_bpf); + ofdm->rx_bpf = NULL; +} + +void ofdm_destroy(struct OFDM *ofdm) { + int i; + + if (strlen(ofdm->data_mode)) { + free(ofdm->tx_preamble); + free(ofdm->tx_postamble); + } + if (ofdm->tx_bpf) { + deallocate_tx_bpf(ofdm); + } + if (ofdm->rx_bpf) { + deallocate_rx_bpf(ofdm); + } + + FREE(ofdm->pilot_samples); + FREE(ofdm->rxbuf); + FREE(ofdm->pilots); + + for (i = 0; i < (ofdm->ns + 3); i++) { /* 2D array */ + FREE(ofdm->rx_sym[i]); + } + + FREE(ofdm->rx_sym); + FREE(ofdm->rx_np); + FREE(ofdm->rx_amp); + FREE(ofdm->aphase_est_pilot_log); + FREE(ofdm->tx_uw_syms); + FREE(ofdm->uw_ind); + FREE(ofdm->uw_ind_sym); + FREE(ofdm); +} + +/* + * Convert frequency domain into time domain + * + * This algorithm was optimized for speed + */ +static void idft(struct OFDM *ofdm, complex float *result, complex float *vector) { + int row, col; + + result[0] = 0.0f; + + for (col = 0; col < (ofdm->nc + 2); col++) { + result[0] += vector[col]; // cexp(j0) == 1 + } + + result[0] *= ofdm->inv_m; + + for (row = 1; row < ofdm->m; row++) { + complex float c = cmplx(ofdm->tx_nlower * ofdm->doc *row); + complex float delta = cmplx(ofdm->doc * row); + + result[row] = 0.0f; + + for (col = 0; col < (ofdm->nc + 2); col++) { + result[row] += (vector[col] * c); + c *= delta; + } + + result[row] *= ofdm->inv_m; + } +} + +/* + * Convert time domain into frequency domain + * + * This algorithm was optimized for speed + */ +static void dft(struct OFDM *ofdm, complex float *result, complex float *vector) { + int row, col; + + for (col = 0; col < (ofdm->nc + 2); col++) { + result[col] = vector[0]; // conj(cexp(j0)) == 1 + } + + for (col = 0; col < (ofdm->nc + 2); col++) { + float tval = (ofdm->rx_nlower + col) * ofdm->doc; + complex float c = cmplxconj(tval); + complex float delta = c; + + for (row = 1; row < ofdm->m; row++) { + result[col] += (vector[row] * c); + c *= delta; + } + } +} + +static complex float vector_sum(complex float *a, int num_elements) { + complex float sum = 0.0f; + int i; + + for (i = 0; i < num_elements; i++) { + sum += a[i]; + } + + return sum; +} + +/* Determine if we can use vector ops below. Only for non-embedded platforms + as double can be significantly slower on those. */ +#ifndef __EMBEDDED__ +#if __GNUC__ > 4 || \ + (__GNUC__ == 4 && (__GNUC_MINOR__ > 6 || \ + (__GNUC_MINOR__ == 6 && \ + __GNUC_PATCHLEVEL__ > 0))) +#define USE_VECTOR_OPS 1 +#elif __clang_major__ > 3 || \ + (__clang_minor__ == 3 && (__clang_minor__ > 7 || \ + (__clang_minor__ == 7 && \ + __clang_patchlevel__ > 0))) +#define USE_VECTOR_OPS 1 +#endif +#else +#include "codec2_math.h" +#endif /* __EMBEDDED__ */ + +#if USE_VECTOR_OPS +typedef float float4 __attribute__ ((vector_size (16))); +#endif /* USE_VECTOR_OPS */ + +static complex float ofdm_complex_dot_product(complex float *left, complex float *right, int numSamples) +{ + complex float result = 0; + +#if USE_VECTOR_OPS + float *leftPtr = (float*)left; + float *rightPtr = (float*)right; + float4 accumPos = { 0, 0, 0, 0 }; + float4 accumNeg = { 0, 0, 0, 0 }; + float4 accumImag = { 0, 0, 0, 0 }; + float resultReal = 0; + float resultImag = 0; + int numBlocks = numSamples >> 1; + for (int i = 0; i < numBlocks; i++) + { + /* Lay out vectors as follows: + vec1 = rx[0].a, rx[0].b, rx[1].a, rx[1].b, ... + vec2 = mvec[0].c, mvec[0].d, mvec[1].c, mvec1[1].d, ... */ + float4 vec1 = { leftPtr[0], leftPtr[1], leftPtr[2], leftPtr[3] }; + float4 vec2 = { rightPtr[0], rightPtr[1], rightPtr[2], rightPtr[3] }; + + accumPos += vec1 * vec2; + accumNeg -= vec1 * vec2; + + /* Lay out vec3 as { rx[0].b, rx[0].a, rx[1].b, rx[0].b, ... }. + Multiply vec3 by vec2 to get us bc, ad, bc, ad + and add to second accumulator. */ + float4 vec3 = { leftPtr[1], leftPtr[0], leftPtr[3], leftPtr[2] }; + accumImag += vec3 * vec2; + + /* Shift pointers forward by 4 (2 complex floats). */ + leftPtr += 4; rightPtr += 4; + } + + /* dot product: (a + bi)(c + di) = (ac - bd) + i(bc + ad) */ + resultReal = accumPos[0] + accumNeg[1] + accumPos[2] + accumNeg[3]; + resultImag = accumImag[0] + accumImag[1] + accumImag[2] + accumImag[3]; + result = resultReal + I * resultImag; + + /* Add remaining values to corr that couldn't be vectorized above. */ + for (int i = numBlocks << 1; i < numSamples; i++) + { + result += left[i] * right[i]; + } +#elif __EMBEDDED__ + float resultReal = 0, resultImag = 0; + codec2_complex_dot_product_f32((COMP*)left, (COMP*)right, numSamples, &resultReal, &resultImag); + result = resultReal + I * resultImag; +#else + for (int i = 0; i < numSamples; i++) + { + result += left[i] * right[i]; + } +#endif /* USE_VECTOR_OPS */ + + return result; +} + + +/* + * Correlates the OFDM pilot symbol samples with a window of received + * samples to determine the most likely timing offset. Combines two + * frames pilots so we need at least Nsamperframe+M+Ncp samples in rx. + * + * Can be used for acquisition (coarse timing), and fine timing. + * + * Breaks when freq offset approaches +/- symbol rate (e.g + * +/- 25 Hz for 700D). + */ +static int est_timing(struct OFDM *ofdm, complex float *rx, int length, + int fcoarse, float *timing_mx, int *timing_valid, int step) { + complex float corr_st, corr_en; + int Ncorr = length - (ofdm->samplesperframe + ofdm->samplespersymbol); + float corr[Ncorr]; + int i, j; + float acc = 0.0f; + + for (i = 0; i < length; i++) { + acc += cnormf(rx[i]); + } + + float av_level = 1.0f/(2.0f * sqrtf(ofdm->timing_norm * acc / length) + 1E-12f); + + /* precompute the freq shift multiplied by pilot samples outside of main loop */ + + PROFILE_VAR(wvecpilot); + PROFILE_SAMPLE(wvecpilot); + + complex float wvec_pilot[ofdm->samplespersymbol]; + + switch(fcoarse) { + case -40: + for (j = 0; j < ofdm->samplespersymbol; j++) + wvec_pilot[j] = conjf(ofdm_wval[j]*ofdm->pilot_samples[j]); + break; + case 0: + for (j = 0; j < ofdm->samplespersymbol; j++) + wvec_pilot[j] = conjf(ofdm->pilot_samples[j]); + break; + case 40: + for (j = 0; j < ofdm->samplespersymbol; j++) + wvec_pilot[j] = ofdm_wval[j]*conjf(ofdm->pilot_samples[j]); + break; + default: + assert(0); + } + + /* use of __REAL__ provides a speed in increase of 10ms/frame during acquisition, however complex + is fast enough for real time operation */ + +#if defined(__EMBEDDED__) && defined(__REAL__) + float rx_real[length]; + float wvec_pilot_real[ofdm->samplespersymbol]; + float wvec_pilot_imag[ofdm->samplespersymbol]; + + for (i = 0; i < length; i++) { + rx_real[i] = crealf(rx[i]); + } + + for (i = 0; i < ofdm->samplespersymbol; i++) { + wvec_pilot_real[i] = crealf(wvec_pilot[i]); + wvec_pilot_imag[i] = cimagf(wvec_pilot[i]); + } + +#endif + PROFILE_SAMPLE_AND_LOG2(wvecpilot, " wvecpilot"); + PROFILE_VAR(corr_start); + PROFILE_SAMPLE(corr_start); + + for (i = 0; i < Ncorr; i += step) { + corr_st = 0.0f; + corr_en = 0.0f; + +#ifdef __EMBEDDED__ +#ifdef __REAL__ + float re,im; + + codec2_dot_product_f32(&rx_real[i], wvec_pilot_real, ofdm->samplespersymbol, &re); + codec2_dot_product_f32(&rx_real[i], wvec_pilot_imag, ofdm->samplespersymbol, &im); + corr_st = re + im * I; + + codec2_dot_product_f32(&rx_real[i+ ofdm->samplesperframe], wvec_pilot_real, ofdm->samplespersymbol, &re); + codec2_dot_product_f32(&rx_real[i+ ofdm->samplesperframe], wvec_pilot_imag, ofdm->samplespersymbol, &im); + corr_en = re + im * I; + +#else + float re,im; + + codec2_complex_dot_product_f32((COMP*)&rx[i], (COMP*)wvec_pilot, ofdm->samplespersymbol, &re, &im); + corr_st = re + im * I; + + codec2_complex_dot_product_f32((COMP*)&rx[i+ ofdm->samplesperframe], (COMP*)wvec_pilot, ofdm->samplespersymbol, &re, &im); + corr_en = re + im * I; +#endif +#else + corr_st = ofdm_complex_dot_product(&rx[i], wvec_pilot, ofdm->samplespersymbol); + corr_en = ofdm_complex_dot_product(&rx[i + ofdm->samplesperframe], wvec_pilot, ofdm->samplespersymbol); +#endif // __EMBEDDED__ + corr[i] = (cabsf(corr_st) + cabsf(corr_en)) * av_level; + } + + PROFILE_SAMPLE_AND_LOG2(corr_start, " corr"); + + /* find the max magnitude and its index */ + + int timing_est = 0; + *timing_mx = 0.0f; + + for (i = 0; i < Ncorr; i+=step) { + if (corr[i] > *timing_mx) { + *timing_mx = corr[i]; + timing_est = i; + } + } + + // only declare timing valid if there are enough samples in rxbuf to demodulate a frame + *timing_valid = (cabsf(rx[timing_est]) > 0.0) && (*timing_mx > ofdm->timing_mx_thresh); + + if (ofdm->verbose > 2) { + fprintf(stderr, " av_level: %f max: %f timing_est: %d timing_valid: %d\n", (double) av_level, + (double) *timing_mx, timing_est, *timing_valid); + } + + return timing_est; +} + +/* + * Determines frequency offset at current timing estimate, used for + * coarse freq offset estimation during acquisition. Works up to +/- + * the symbol rate, e.g. +/- 25Hz for the FreeDV 700D configuration. + */ +static float est_freq_offset_pilot_corr(struct OFDM *ofdm, complex float *rx, int timing_est, int fcoarse) { + int st = -20; int en = 20; float foff_est = 0.0f; float Cabs_max = 0.0f; + + /* precompute the freq shift multiplied by pilot samples outside of main loop */ + + complex float wvec_pilot[ofdm->samplespersymbol]; + int j; + + switch(fcoarse) { + case -40: + for (j = 0; j < ofdm->samplespersymbol; j++) + wvec_pilot[j] = conjf(ofdm_wval[j]*ofdm->pilot_samples[j]); + break; + case 0: + for (j = 0; j < ofdm->samplespersymbol; j++) + wvec_pilot[j] = conjf(ofdm->pilot_samples[j]); + break; + case 40: + for (j = 0; j < ofdm->samplespersymbol; j++) + wvec_pilot[j] = ofdm_wval[j]*conjf(ofdm->pilot_samples[j]); + break; + default: + assert(0); + } + + // sample sum of DFT magnitude of correlated signals at each freq offset and look for peak + for (int f = st; f < en; f++) { + complex float corr_st = 0.0f; + complex float corr_en = 0.0f; + float tmp = TAU * f / ofdm->fs; + complex float delta = cmplxconj(tmp); + complex float w = cmplxconj(0.0f); + int i; + + for (i = 0; i < ofdm->samplespersymbol; i++) { + // "mix" down (correlate) the pilot sequences from frame with 0 Hz offset pilot samples + complex float csam = wvec_pilot[i] * w; + int est = timing_est + i; + + corr_st += rx[est ] * csam; + corr_en += rx[est + ofdm->samplesperframe] * csam; + w = w * delta; + } + + float Cabs = cabsf(corr_st) + cabsf(corr_en); + + if (Cabs > Cabs_max) { + Cabs_max = Cabs; + foff_est = f; + } + } + + ofdm->foff_metric = 0.0f; // not used in this version of freq est algorithm + + if (ofdm->verbose > 2) { + fprintf(stderr, "cabs_max: %f foff_est: %f\n", (double) Cabs_max, (double) foff_est); + } + + return foff_est; +} + + +/* + * ---------------------------------------------- + * ofdm_txframe - modulates one frame of symbols + * ---------------------------------------------- + */ +void ofdm_txframe(struct OFDM *ofdm, complex float *tx, complex float *tx_sym_lin) { + complex float aframe[ofdm->np * ofdm->ns][ofdm->nc + 2]; + complex float asymbol[ofdm->m]; + complex float asymbol_cp[ofdm->samplespersymbol]; + int i, j, k, m; + + /* initialize aframe to complex zero */ + + for (i = 0; i < (ofdm->np * ofdm->ns); i++) { + for (j = 0; j < (ofdm->nc + 2); j++) { + aframe[i][j] = 0.0f; + } + } + + /* + * Place symbols in multi-carrier frame with pilots + * This will place boundary values of complex zero around data + */ + int s = 0; + for (int r = 0; r < ofdm->np*ofdm->ns; r++) { + + if ((r % ofdm->ns) == 0) { + /* copy in a row of complex pilots to first row of each frame */ + for (i = 0; i < (ofdm->nc + 2); i++) { + aframe[r][i] = ofdm->pilots[i]; + } + } + else { + /* copy in the Nc complex data symbols with [0 Nc 0] or (Nc + 2) total */ + for (j = 1; j < (ofdm->nc + 1); j++) { + aframe[r][j] = tx_sym_lin[s++]; + if (ofdm->dpsk_en == true) { + aframe[r][j] *= aframe[r-1][j]; + } + } + } + } + + /* OFDM up-convert symbol by symbol so we can add CP */ + + for (i = 0, m = 0; i < (ofdm->np * ofdm->ns); i++, m += ofdm->samplespersymbol) { + idft(ofdm, asymbol, aframe[i]); + + /* Copy the last Ncp samples to the front */ + + for (j = (ofdm->m - ofdm->ncp), k = 0; j < ofdm->m; j++, k++) { + asymbol_cp[k] = asymbol[j]; + } + + /* Now copy the all samples for this row after it */ + + for (j = ofdm->ncp, k = 0; k < ofdm->m; j++, k++) { + asymbol_cp[j] = asymbol[k]; + } + + /* Now move row to the tx output */ + + for (j = 0; j < ofdm->samplespersymbol; j++) { + tx[m + j] = asymbol_cp[j]; + } + } + + size_t samplesperpacket = ofdm->np*ofdm->samplesperframe; + ofdm_hilbert_clipper(ofdm, tx, samplesperpacket); +} + + +/* Scale Tx signal and optionally apply two stage Hilbert clipper to improve PAPR */ +void ofdm_hilbert_clipper(struct OFDM *ofdm, complex float *tx, size_t n) { + + /* vanilla Tx output waveform should be about OFDM_PEAK */ + for(int i=0; i<n; i++) tx[i] *= ofdm->amp_scale; + + if (ofdm->clip_en) { + // this gain sets the drive into the Hilbert Clipper and sets PAPR + for(int i=0; i<n; i++) tx[i] *= ofdm->clip_gain1; + ofdm_clip(tx, OFDM_PEAK, n); + } + + /* BPF to remove out of band energy clipper introduces */ + if (ofdm->tx_bpf_en) { + assert(ofdm->tx_bpf != NULL); + complex float tx_filt[n]; + + quisk_ccfFilter(tx, tx_filt, n, ofdm->tx_bpf); + memmove(tx, tx_filt, n * sizeof (complex float)); + } + + /* BPF messes up peak levels, this gain gets back to approx OFDM_PEAK */ + if (ofdm->tx_bpf_en && ofdm->clip_en) + for(int i=0; i<n; i++) tx[i] *= ofdm->clip_gain2; + + /* a very small percentage of samples may still exceed OFDM_PEAK, in + clipped or unclipped mode. Lets remove them so we present consistent + levels to the transmitter */ + + ofdm_clip(tx, OFDM_PEAK, n); +} + + +struct OFDM_CONFIG *ofdm_get_config_param(struct OFDM *ofdm) { return &ofdm->config; } +int ofdm_get_nin(struct OFDM *ofdm) {return ofdm->nin;} +int ofdm_get_samples_per_frame(struct OFDM *ofdm) { return ofdm->samplesperframe;} +int ofdm_get_samples_per_packet(struct OFDM *ofdm) { return ofdm->samplesperframe*ofdm->np;} +int ofdm_get_max_samples_per_frame(struct OFDM *ofdm) {return ofdm->max_samplesperframe; } +int ofdm_get_bits_per_frame(struct OFDM *ofdm) {return ofdm->bitsperframe; } +int ofdm_get_bits_per_packet(struct OFDM *ofdm) {return ofdm->bitsperpacket; } +void ofdm_set_verbose(struct OFDM *ofdm, int level) { ofdm->verbose = level; } + +void ofdm_set_timing_enable(struct OFDM *ofdm, bool val) { + ofdm->timing_en = val; + + if (ofdm->timing_en == false) { + /* manually set ideal timing instant */ + + ofdm->sample_point = (ofdm->ncp - 1); + } +} + +int ofdm_get_phase_est_bandwidth_mode(struct OFDM *ofdm) { + return ofdm->phase_est_bandwidth_mode; /* int version of enum */ +} + +void ofdm_set_phase_est_bandwidth_mode(struct OFDM *ofdm, int val) { + assert((val == AUTO_PHASE_EST) || (val == LOCKED_PHASE_EST)); + ofdm->phase_est_bandwidth_mode = val; +} + +void ofdm_set_foff_est_enable(struct OFDM *ofdm, bool val) { + ofdm->foff_est_en = val; +} + +void ofdm_set_phase_est_enable(struct OFDM *ofdm, bool val) { + ofdm->phase_est_en = val; +} + +void ofdm_set_off_est_hz(struct OFDM *ofdm, float val) { + ofdm->foff_est_hz = val; +} + +void ofdm_set_tx_bpf(struct OFDM *ofdm, bool val) { + if (val == true) { + if (ofdm->tx_bpf == NULL) + allocate_tx_bpf(ofdm); + + ofdm->tx_bpf_en = true; + } + else { + if (ofdm->tx_bpf != NULL) + deallocate_tx_bpf(ofdm); + + ofdm->tx_bpf_en = false; + } +} + +void ofdm_set_dpsk(struct OFDM *ofdm, bool val) { + ofdm->dpsk_en = val; +} + +// select burst mode, and set packets per burst +void ofdm_set_packets_per_burst(struct OFDM *ofdm, int packetsperburst) { + ofdm->data_mode = "burst"; + ofdm->packetsperburst = packetsperburst; + ofdm->postambledetectoren = true; +} + +/* + * -------------------------------------- + * ofdm_mod - modulates one frame of bits + * -------------------------------------- + */ +void ofdm_mod(struct OFDM *ofdm, COMP *result, const int *tx_bits) { + int length = ofdm->bitsperpacket / ofdm->bps; + complex float *tx = (complex float *) result; // complex has same memory layout + complex float tx_sym_lin[length]; + int dibit[2]; + int s, i; + + if (ofdm->bps == 1) { + /* Here we will have Nbitsperpacket / 1 */ + + for (s = 0; s < length; s++) { + tx_sym_lin[s] = (float) (2 * tx_bits[s] - 1); + } + } else if (ofdm->bps == 2) { + /* Here we will have Nbitsperpacket / 2 */ + + for (s = 0, i = 0; i < length; s += 2, i++) { + dibit[0] = tx_bits[s + 1] & 0x1; + dibit[1] = tx_bits[s ] & 0x1; + + tx_sym_lin[i] = qpsk_mod(dibit); + } + } /* else if (ofdm->bps == 3) { } TODO */ + + ofdm_txframe(ofdm, tx, tx_sym_lin); +} + +/* + * ---------------------------------------------------------------------------------- + * ofdm_sync_search - attempts to find coarse sync parameters for modem initial sync + * ---------------------------------------------------------------------------------- + */ + +/* + * This is a wrapper to maintain the older functionality + * with an array of COMPs as input + */ +int ofdm_sync_search(struct OFDM *ofdm, COMP *rxbuf_in) { + /* + * insert latest input samples into rxbuf + * so it is primed for when we have to call ofdm_demod() + */ + + /* note can't use memcpy when src and dest overlap */ + memmove(&ofdm->rxbuf[0], &ofdm->rxbuf[ofdm->nin], + (ofdm->nrxbuf - ofdm->nin) * sizeof (complex float)); + memmove(&ofdm->rxbuf[(ofdm->nrxbuf - ofdm->nin)], + rxbuf_in, ofdm->nin * sizeof (complex float)); + + return(ofdm_sync_search_core(ofdm)); +} + +/* + * This is a wrapper to reduce memory allocated. + * This works with ofdm_demod and freedv_api. Gain is not used here. + */ +int ofdm_sync_search_shorts(struct OFDM *ofdm, short *rxbuf_in, float gain) { + int i, j; + + /* shift the buffer left based on nin */ + + memmove(&ofdm->rxbuf[0], &ofdm->rxbuf[ofdm->nin], + (ofdm->nrxbuf - ofdm->nin) * sizeof (complex float)); + + /* insert latest input samples onto tail of rxbuf */ + + for (j = 0, i = (ofdm->nrxbuf - ofdm->nin); i < ofdm->nrxbuf; j++, i++) { + ofdm->rxbuf[i] = ((float)rxbuf_in[j] / 32767.0f); + } + + return ofdm_sync_search_core(ofdm); +} + +/* Joint estimation of timing and freq used for burst data acquisition */ + +static float est_timing_and_freq(struct OFDM *ofdm, + int *t_est, float *foff_est, + complex float *rx, int Nrx, + complex float *known_samples, int Npsam, + int tstep, float fmin, float fmax, float fstep) { + int Ncorr = Nrx - Npsam + 1; + float max_corr = 0; + *t_est = 0; *foff_est = 0.0; + for (float afcoarse=fmin; afcoarse<=fmax; afcoarse += fstep) { + float w = TAU * afcoarse / ofdm->fs; + complex float mvec[Npsam]; + for(int i=0; i<Npsam; i++) { + complex float ph = cmplx(w*i); + mvec[i] = conjf(known_samples[i]*ph); + } + for(int t=0; t<Ncorr; t+=tstep) { + complex float corr = ofdm_complex_dot_product(&rx[t], mvec, Npsam); + + if (cabsf(corr) > max_corr) { + max_corr = cabsf(corr); + *t_est = t; + *foff_est = afcoarse; + } + } + } + + /* obtain normalised real number for timing_mx */ + float mag1=0, mag2=0; + for(int i=0; i<Npsam; i++) { + mag1 += cabsf(known_samples[i]*conjf(known_samples[i])); + mag2 += cabsf(rx[i+*t_est]*conjf(rx[i+*t_est])); + } + float timing_mx = max_corr*max_corr/(mag1*mag2+1E-12); + if (ofdm->verbose > 2) { + fprintf(stderr, " t_est: %4d timing:mx: %f foff_est: %f\n", *t_est, (double)timing_mx, (double)*foff_est); + } + + return timing_mx; +} + +/* Two stage burst mode acquisition */ + +static void burst_acquisition_detector(struct OFDM *ofdm, + complex float *rx, int n, + complex float *known_sequence, + int *ct_est, float *foff_est, float *timing_mx) +{ + + float fmin, fmax, fstep; + int tstep; + + // initial search over coarse grid + tstep = 4; fstep = 5; fmin = ofdm->fmin; fmax = ofdm->fmax; + *timing_mx = est_timing_and_freq(ofdm, ct_est, foff_est, + &rx[n], 2*ofdm->samplesperframe, + known_sequence, ofdm->samplesperframe, + tstep, fmin, fmax, fstep); + + // refine estimate over finer grid + fmin = *foff_est - ceilf(fstep/2.0); fmax = *foff_est + ceilf(fstep/2.0); + int fine_st = n + *ct_est - tstep/2.0; + *timing_mx = est_timing_and_freq(ofdm, ct_est, foff_est, + &rx[fine_st], ofdm->samplesperframe + tstep, + known_sequence, ofdm->samplesperframe, + 1, fmin, fmax, 1.0); + + // refer ct_est to nominal start of frame rx[n] + *ct_est += fine_st - n; +} + +static int ofdm_sync_search_burst(struct OFDM *ofdm) { + + int st = ofdm->rxbufst + ofdm->m + ofdm->ncp + ofdm->samplesperframe; + char *pre_post = ""; + + int pre_ct_est; float pre_foff_est, pre_timing_mx; + burst_acquisition_detector(ofdm, ofdm->rxbuf, st, (complex float*)ofdm->tx_preamble, + &pre_ct_est, &pre_foff_est, &pre_timing_mx); + + int post_ct_est; float post_foff_est, post_timing_mx; + if (ofdm->postambledetectoren) + burst_acquisition_detector(ofdm, ofdm->rxbuf, st, (complex float*)ofdm->tx_postamble, + &post_ct_est, &post_foff_est, &post_timing_mx); + + int ct_est; float foff_est, timing_mx; + if (!ofdm->postambledetectoren || (pre_timing_mx > post_timing_mx)) { + timing_mx = pre_timing_mx; ct_est = pre_ct_est; foff_est = pre_foff_est; + pre_post = "pre"; + } else { + timing_mx = post_timing_mx; ct_est = post_ct_est; foff_est = post_foff_est; + pre_post = "post"; + } + + int timing_valid = timing_mx > ofdm->timing_mx_thresh; + if (timing_valid) { + if (!strcmp(pre_post, "post")) { + ofdm->post++; + // we won't be need any new samples for a while .... + ofdm->nin = 0; + // backup to first modem frame in packet + ofdm->rxbufst -= ofdm->np*ofdm->samplesperframe; + ofdm->rxbufst += ct_est; + } else { + ofdm->pre++; + // ct_est is start of preamble, so advance past that to start of first modem frame + ofdm->nin = ofdm->samplesperframe + ct_est - 1; + } + } else + ofdm->nin = ofdm->samplesperframe; + + ofdm->ct_est = ct_est; + ofdm->foff_est_hz = foff_est; + ofdm->timing_mx = timing_mx; + ofdm->timing_valid = timing_valid; + + if (ofdm->verbose > 1) { + fprintf(stderr, " ct_est: %4d nin: %4d mx: %3.2f foff_est: % 5.1f timing_valid: %d %4s\n", + ct_est, ofdm->nin, (double)timing_mx, (double)foff_est, timing_valid, pre_post); + } + + return ofdm->timing_valid; +} + +/* + * Attempts to find coarse sync parameters for modem initial sync (streaming mode) + */ +static int ofdm_sync_search_stream(struct OFDM *ofdm) { + int act_est, afcoarse; + + /* Attempt coarse timing estimate (i.e. detect start of frame) at a range of frequency offsets */ + + int st = ofdm->rxbufst + ofdm->samplesperframe + ofdm->samplespersymbol; + int en = st + 2 * ofdm->samplesperframe + ofdm->samplespersymbol; + + int fcoarse = 0; + float atiming_mx, timing_mx = 0.0f; + int ct_est = 0; + int atiming_valid, timing_valid = 0; + + PROFILE_VAR(timing_start); + PROFILE_SAMPLE(timing_start); + + for (afcoarse = -40; afcoarse <= 40; afcoarse += 40) { + act_est = est_timing(ofdm, &ofdm->rxbuf[st], (en - st), afcoarse, &atiming_mx, &atiming_valid, 2); + + if (atiming_mx > timing_mx) { + ct_est = act_est; + timing_mx = atiming_mx; + fcoarse = afcoarse; + timing_valid = atiming_valid; + } + } + + PROFILE_SAMPLE_AND_LOG2(timing_start, " timing"); + + /* refine freq est within -/+ 20 Hz window */ + + PROFILE_VAR(freq_start); + PROFILE_SAMPLE(freq_start); + + ofdm->coarse_foff_est_hz = est_freq_offset_pilot_corr(ofdm, &ofdm->rxbuf[st], ct_est, fcoarse); + ofdm->coarse_foff_est_hz += fcoarse; + + PROFILE_SAMPLE_AND_LOG2(freq_start, " freq"); + + if (ofdm->verbose > 1) { + fprintf(stderr, " ct_est: %4d foff_est: %4.1f timing_valid: %d timing_mx: %5.4f\n", + ct_est, (double) ofdm->coarse_foff_est_hz, timing_valid, + (double)timing_mx); + } + + ofdm->timing_valid = timing_valid; + if (ofdm->timing_valid != 0) { + /* potential candidate found .... */ + + /* calculate number of samples we need on next buffer to get into sync */ + + ofdm->nin = ct_est; + + /* reset modem states */ + + ofdm->sample_point = ofdm->timing_est = 0; + ofdm->foff_est_hz = ofdm->coarse_foff_est_hz; + ofdm->timing_mx = timing_mx; + } else { + ofdm->nin = ofdm->samplesperframe; + } + + ofdm->timing_mx = timing_mx; + + return ofdm->timing_valid; +} + +static int ofdm_sync_search_core(struct OFDM *ofdm) { + if (ofdm->rx_bpf_en) { + assert(ofdm->rx_bpf != NULL); + complex float *rxbuf_in = &ofdm->rxbuf[(ofdm->nrxbuf - ofdm->nin)]; + quisk_ccfFilter(rxbuf_in, rxbuf_in, ofdm->nin, ofdm->rx_bpf); + } + if (!strcmp(ofdm->data_mode, "burst")) + return ofdm_sync_search_burst(ofdm); + else + return ofdm_sync_search_stream(ofdm); +} + +/* + * ------------------------------------------ + * ofdm_demod - Demodulates one frame of bits + * ------------------------------------------ + */ + +/* + * This wrapper accepts an array of COMPs as input + */ +void ofdm_demod(struct OFDM *ofdm, int *rx_bits, COMP *rxbuf_in) { + complex float *rx = (complex float *) &rxbuf_in[0]; // complex has same memory layout + int i, j; + + /* shift the buffer left based on nin */ + for (i = 0, j = ofdm->nin; i < (ofdm->nrxbuf - ofdm->nin); i++, j++) { + ofdm->rxbuf[i] = ofdm->rxbuf[j]; + } + + /* insert latest input samples onto tail of rxbuf */ + for (j = 0, i = (ofdm->nrxbuf - ofdm->nin); i < ofdm->nrxbuf; j++, i++) { + ofdm->rxbuf[i] = rx[j]; + } + + ofdm_demod_core(ofdm, rx_bits); +} + +/* + * This is a wrapper with a real short interface to minimise allocated memory. + * This works with ofdm_demod and freedv_api. Gain is not used here. + */ +void ofdm_demod_shorts(struct OFDM *ofdm, int *rx_bits, short *rxbuf_in, float gain) { + int i, j; + + /* shift the buffer left based on nin */ + + for (i = 0, j = ofdm->nin; i < (ofdm->nrxbuf - ofdm->nin); i++, j++) { + ofdm->rxbuf[i] = ofdm->rxbuf[j]; + } + + /* insert latest input samples onto tail of rxbuf */ + for (j = 0, i = (ofdm->nrxbuf - ofdm->nin); i < ofdm->nrxbuf; j++, i++) { + ofdm->rxbuf[i] = ((float)rxbuf_in[j] / 32767.0f); + } + + ofdm_demod_core(ofdm, rx_bits); +} + +/* + * This is the rest of the function which expects that the data is + * already in ofdm->rxbuf + */ +static void ofdm_demod_core(struct OFDM *ofdm, int *rx_bits) { + int prev_timing_est = ofdm->timing_est; + int i, j, k, rr, st, en; + + if (ofdm->rx_bpf_en) { + assert(ofdm->rx_bpf != NULL); + complex float *rxbuf_in = &ofdm->rxbuf[(ofdm->nrxbuf - ofdm->nin)]; + quisk_ccfFilter(rxbuf_in, rxbuf_in, ofdm->nin, ofdm->rx_bpf); + } + + /* + * get user and calculated freq offset + */ + float woff_est = TAU * ofdm->foff_est_hz / ofdm->fs; + + /* update timing estimate ---------------------------------------------- */ + + if (ofdm->timing_en == true) { + /* update timing at start of every frame */ + + st = ofdm->rxbufst + ofdm->samplespersymbol + ofdm->samplesperframe - (int) floorf((float)ofdm->ftwindowwidth / 2) + ofdm->timing_est; + en = st + ofdm->samplesperframe - 1 + ofdm->samplespersymbol + ofdm->ftwindowwidth; + + complex float work[(en - st)]; + + /* + * Adjust for the frequency error by shifting the phase + * using a conjugate multiply + */ + for (j = 0, i = st; i < en; j++, i++) { + work[j] = ofdm->rxbuf[i] * cmplxconj(woff_est * i); + } + + int ft_est = est_timing(ofdm, work, (en - st), 0.0f, &ofdm->timing_mx, &ofdm->timing_valid, 1); + + ofdm->timing_est += ft_est - (int) ceilf((float)ofdm->ftwindowwidth / 2) + 1; + + if (ofdm->verbose > 2) { + fprintf(stderr, " ft_est: %2d timing_est: %2d sample_point: %2d\n", ft_est, ofdm->timing_est, + ofdm->sample_point); + } + + /* Black magic to keep sample_point inside cyclic prefix. Or something like that. */ + + ofdm->sample_point = max(ofdm->timing_est + 4, ofdm->sample_point); + ofdm->sample_point = min(ofdm->timing_est + ofdm->ncp-4, ofdm->sample_point); + } + + /* + * Convert the time-domain samples to the frequency-domain using the rx_sym + * data matrix. This will be Nc+2 carriers of 11 symbols. + * + * You will notice there are Nc+2 BPSK symbols for each pilot symbol, and + * that there are Nc QPSK symbols for each data symbol. + * + * XXXXXXXXXXXXXXXXX <-- Timing Slip + * PPPPPPPPPPPPPPPPPPP <-- Previous Frames Pilot + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD Ignore these past data symbols + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * PPPPPPPPPPPPPPPPPPP <-- This Frames Pilot + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD These are the current data symbols to be decoded + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * PPPPPPPPPPPPPPPPPPP <-- Next Frames Pilot + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD Ignore these next data symbols + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * DDDDDDDDDDDDDDDDD + * PPPPPPPPPPPPPPPPPPP <-- Future Frames Pilot + * XXXXXXXXXXXXXXXXX <-- Timing Slip + * + * So this algorithm will have seven data symbols and four pilot symbols to process. + * The average of the four pilot symbols is our phase estimation. + */ + for (i = 0; i < (ofdm->ns + 3); i++) { + for (j = 0; j < (ofdm->nc + 2); j++) { + ofdm->rx_sym[i][j] = 0.0f; + } + } + + /* + * "Previous" pilot symbol is one modem frame above. + */ + st = ofdm->rxbufst + ofdm->samplespersymbol + 1 + ofdm->sample_point; + en = st + ofdm->m; + + complex float work[ofdm->m]; + + /* down-convert at current timing instant------------------------------- */ + + for (k = 0, j = st; j < en; k++, j++) { + work[k] = ofdm->rxbuf[j] * cmplxconj(woff_est * j); + } + + /* + * Each symbol is of course ofdm->samplespersymbol samples long and + * becomes Nc+2 carriers after DFT. + * + * We put this carrier pilot symbol at the top of our matrix: + * + * 1 .................. Nc+2 + * + * +----------------------+ + * | Previous Pilot | rx_sym[0] + * +----------------------+ + * | | + * + */ + dft(ofdm, ofdm->rx_sym[0], work); + + /* + * "This" pilot comes after the extra symbol allotted at the top, and after + * the "previous" pilot and previous data symbols (let's call it, the previous + * modem frame). + * + * So we will now be starting at "this" pilot symbol, and continuing to the + * "next" pilot symbol. + * + * In this routine we also process the current data symbols. + */ + for (rr = 0; rr < (ofdm->ns + 1); rr++) { + st = ofdm->rxbufst + ofdm->samplespersymbol + ofdm->samplesperframe + (rr * ofdm->samplespersymbol) + 1 + ofdm->sample_point; + en = st + ofdm->m; + + /* down-convert at current timing instant---------------------------------- */ + + for (k = 0, j = st; j < en; k++, j++) { + work[k] = ofdm->rxbuf[j] * cmplxconj(woff_est * j); + } + + /* + * We put these Nc+2 carrier symbols into our matrix after the previous pilot: + * + * 1 .................. Nc+2 + * | Previous Pilot | rx_sym[0] + * +----------------------+ + * | This Pilot | rx_sym[1] + * +----------------------+ + * | Data | rx_sym[2] + * +----------------------+ + * | Data | rx_sym[3] + * +----------------------+ + * | Data | rx_sym[4] + * +----------------------+ + * | Data | rx_sym[5] + * +----------------------+ + * | Data | rx_sym[6] + * +----------------------+ + * | Data | rx_sym[7] + * +----------------------+ + * | Data | rx_sym[8] + * +----------------------+ + * | Next Pilot | rx_sym[9] + * +----------------------+ + * | | rx_sym[10] + */ + dft(ofdm, ofdm->rx_sym[rr + 1], work); + } + + /* + * OK, now we want to process to the "future" pilot symbol. This is after + * the "next" modem frame. + * + * We are ignoring the data symbols between the "next" pilot and "future" pilot. + * We only want the "future" pilot symbol, to perform the averaging of all pilots. + */ + st = ofdm->rxbufst + ofdm->samplespersymbol + (3 * ofdm->samplesperframe) + 1 + ofdm->sample_point; + en = st + ofdm->m; + + /* down-convert at current timing instant------------------------------- */ + + for (k = 0, j = st; j < en; k++, j++) { + work[k] = ofdm->rxbuf[j] * cmplxconj(woff_est * j); + } + + /* + * We put the future pilot after all the previous symbols in the matrix: + * + * 1 .................. Nc+2 + * + * | | rx_sym[9] + * +----------------------+ + * | Future Pilot | rx_sym[10] + * +----------------------+ + */ + dft(ofdm, ofdm->rx_sym[ofdm->ns + 2], work); + + /* + * We are finished now with the DFT and down conversion + * From here on down we are in the frequency domain + */ + + /* est freq err based on all carriers ---------------------------------- */ + + if (ofdm->foff_est_en == true) { + /* + * sym[1] is 'this' pilot symbol, sym[9] is 'next' pilot symbol. + * + * By subtracting the two averages of these pilots, we find the frequency + * by the change in phase over time. + */ + complex float freq_err_rect = + conjf(vector_sum(ofdm->rx_sym[1], ofdm->nc + 2)) * + vector_sum(ofdm->rx_sym[ofdm->ns + 1], ofdm->nc + 2); + + /* prevent instability in atan(im/re) when real part near 0 */ + + freq_err_rect += 1E-6f; + + float freq_err_hz = cargf(freq_err_rect) * ofdm->rs / (TAU * ofdm->ns); + if (ofdm->foff_limiter) { + /* optionally tame updates in low SNR channels */ + if (freq_err_hz > 1.0) freq_err_hz = 1.0; + if (freq_err_hz < -1.0) freq_err_hz = -1.0; + } + ofdm->foff_est_hz += (ofdm->foff_est_gain * freq_err_hz); + } + + /* OK - now estimate and correct pilot phase -------------------------- */ + + complex float aphase_est_pilot_rect; + float aphase_est_pilot[ofdm->nc + 2]; + float aamp_est_pilot[ofdm->nc + 2]; + + for (i = 0; i < (ofdm->nc + 2); i++) { + aphase_est_pilot[i] = 10.0f; + aamp_est_pilot[i] = 0.0f; + } + + for (i = 1; i < (ofdm->nc + 1); i++) { /* ignore first and last carrier for count */ + if (ofdm->phase_est_bandwidth == low_bw) { + complex float symbol[3]; + + /* + * Use all pilots normally, results in low SNR performance, + * but will fall over in high Doppler propagation + * + * Basically we divide the Nc+2 pilots into groups of 3 + * Then average the phase surrounding each of the data symbols. + */ + for (k = 0, j = (i - 1); k < 3; k++, j++) { + symbol[k] = ofdm->rx_sym[1][j] * conjf(ofdm->pilots[j]); /* this pilot conjugate */ + } + + aphase_est_pilot_rect = vector_sum(symbol, 3); + + for (k = 0, j = (i - 1); k < 3; k++, j++) { + symbol[k] = ofdm->rx_sym[ofdm->ns + 1][j] * conjf(ofdm->pilots[j]); /* next pilot conjugate */ + } + + aphase_est_pilot_rect += vector_sum(symbol, 3); + + /* use pilots in past and future */ + + for (k = 0, j = (i - 1); k < 3; k++, j++) { + symbol[k] = ofdm->rx_sym[0][j] * conjf(ofdm->pilots[j]); /* previous pilot */ + } + + aphase_est_pilot_rect += vector_sum(symbol, 3); + + for (k = 0, j = (i - 1); k < 3; k++, j++) { + symbol[k] = ofdm->rx_sym[ofdm->ns + 2][j] * conjf(ofdm->pilots[j]); /* future pilot */ + } + + aphase_est_pilot_rect += vector_sum(symbol, 3); + + /* amplitude is estimated over 12 pilots */ + aphase_est_pilot_rect /= 12.0f; + + aphase_est_pilot[i] = cargf(aphase_est_pilot_rect); + aamp_est_pilot[i] = cabsf(aphase_est_pilot_rect); + } else { + assert(ofdm->phase_est_bandwidth == high_bw); + + /* + * Use only symbols at 'this' and 'next' to quickly track changes + * in phase due to high Doppler spread in propagation (no neighbor averaging). + * + * As less pilots are averaged, low SNR performance will be poorer + */ + aphase_est_pilot_rect = ofdm->rx_sym[1][i] * conjf(ofdm->pilots[i]); /* "this" pilot conjugate */ + aphase_est_pilot_rect += ofdm->rx_sym[ofdm->ns + 1][i] * conjf(ofdm->pilots[i]); /* "next" pilot conjugate */ + + /* we estimate over 2 pilots */ + aphase_est_pilot_rect /= 2.0f; + aphase_est_pilot[i] = cargf(aphase_est_pilot_rect); + + if (ofdm->amp_est_mode == 0) { + // legacy 700D ampl est method + aamp_est_pilot[i] = cabsf(aphase_est_pilot_rect); + } else { + aamp_est_pilot[i] = cabsf(ofdm->rx_sym[1][i]) + cabsf(ofdm->rx_sym[ofdm->ns + 1][i])/2.0; + } + } + + aphase_est_pilot[i] = cargf(aphase_est_pilot_rect); + aamp_est_pilot[i] = cabsf(aphase_est_pilot_rect); + } + + /* + * correct the phase offset using phase estimate, and demodulate + * bits, separate loop as it runs across cols (carriers) to get + * frame bit ordering correct + */ + complex float rx_corr; + int abit[2]; + int bit_index = 0; + float sum_amp = 0.0f; + + for (rr = 0; rr < ofdm->rowsperframe; rr++) { + /* + * Note the i starts with the second carrier, ends with Nc+1. + * so we ignore the first and last carriers. + * + * Also note we are using sym[2..8] or the seven data symbols. + */ + for (i = 1; i < (ofdm->nc + 1); i++) { + if (ofdm->phase_est_en == true) { + if (ofdm->dpsk_en == true) { + /* differential detection, using pilot as reference at start of frame */ + rx_corr = ofdm->rx_sym[rr + 2][i] * cmplxconj(cargf(ofdm->rx_sym[rr + 1][i])); + } else { + /* regular coherent detection */ + rx_corr = ofdm->rx_sym[rr + 2][i] * cmplxconj(aphase_est_pilot[i]); + } + } else { + rx_corr = ofdm->rx_sym[rr + 2][i]; + } + + /* + * Output complex data symbols after phase correction; + * (_np = no pilots) the pilot symbols have been removed + */ + ofdm->rx_np[(rr * ofdm->nc) + (i - 1)] = rx_corr; + + /* + * Note even though amp ests are the same for each col, + * the FEC decoder likes to have one amplitude per symbol + * so convenient to log them all + */ + ofdm->rx_amp[(rr * ofdm->nc) + (i - 1)] = aamp_est_pilot[i]; + sum_amp += aamp_est_pilot[i]; + + /* + * Note like amps in this implementation phase ests are the + * same for each col, but we log them for each symbol anyway + */ + ofdm->aphase_est_pilot_log[(rr * ofdm->nc) + (i - 1)] = aphase_est_pilot[i]; + + if (ofdm->bps == 1) { + rx_bits[bit_index++] = crealf(rx_corr) > 0.0f; + } else if (ofdm->bps == 2) { + /* + * Only one final task, decode what quadrant the phase + * is in, and return the dibits + */ + qpsk_demod(rx_corr, abit); + rx_bits[bit_index++] = abit[1]; + rx_bits[bit_index++] = abit[0]; + } + } + } + + /* update mean amplitude estimate for LDPC decoder scaling */ + + ofdm->mean_amp = 0.9f * ofdm->mean_amp + 0.1f * sum_amp / (ofdm->rowsperframe * ofdm->nc); + + /* Adjust nin to take care of sample clock offset */ + + ofdm->nin = ofdm->samplesperframe; + + if (ofdm->timing_en == true) { + ofdm->clock_offset_counter += (prev_timing_est - ofdm->timing_est); + + int thresh = ofdm->samplespersymbol / 8; + int tshift = ofdm->samplespersymbol / 4; + + if (ofdm->timing_est > thresh) { + ofdm->nin = ofdm->samplesperframe + tshift; + ofdm->timing_est -= tshift; + ofdm->sample_point -= tshift; + } else if (ofdm->timing_est < -thresh) { + ofdm->nin = ofdm->samplesperframe - tshift; + ofdm->timing_est += tshift; + ofdm->sample_point += tshift; + } + } + + // use internal rxbuf samples if they are available + int rxbufst_next = ofdm->rxbufst + ofdm->nin; + if (rxbufst_next + ofdm->nrxbufmin <= ofdm->nrxbuf) { + ofdm->rxbufst = rxbufst_next; + ofdm->nin = 0; + } +} + + +/* + * Returns an estimate of Es/No in dB - see esno_est.m for more info + */ +float ofdm_esno_est_calc(complex float *rx_sym, int nsym) { + + float sig_var = 0; + float step = 1.0f/nsym; + for (int i = 0; i < nsym; i++) + sig_var += (cnormf(rx_sym[i]) * step); + float sig_rms = sqrtf(sig_var); + + float sum_x = 0.0f; float sum_xx = 0.0f; int n = 0; + for (int i = 0; i < nsym; i++) { + complex float s = rx_sym[i]; + + if (cabsf(s) > sig_rms) { + if (fabs(crealf(s)) > fabs(cimagf(s))) { + sum_x += cimagf(s); + sum_xx += cimagf(s) * cimagf(s); + } else { + sum_x += crealf(s); + sum_xx += crealf(s) * crealf(s); + } + n++; + } + } + + float noise_var; + if (n > 1) + noise_var = (n * sum_xx - sum_x * sum_x) / (n * (n - 1)); + else + noise_var = sig_var; + noise_var *= 2.0f; + + float EsNodB = 10.0f * log10f((1E-12f + sig_var) / (1E-12f + noise_var)); + assert(isnan(EsNodB) == 0); + return EsNodB; +} + + +float ofdm_snr_from_esno(struct OFDM *ofdm, float EsNodB) { + float cyclic_power = 10.0f * log10f((float)(ofdm->ncp + ofdm->m) / ofdm->m); + return EsNodB + 10.0f * log10f((float)(ofdm->nc * ofdm->rs) / 3000.0f) + cyclic_power; +} + +/* + * state machine for 700D/2020 + */ +void ofdm_sync_state_machine_voice1(struct OFDM *ofdm, uint8_t *rx_uw) { + int i; + + State next_state = ofdm->sync_state; + + ofdm->sync_start = false; + ofdm->sync_end = false; + + if (ofdm->sync_state == search) { + if (ofdm->timing_valid) { + ofdm->frame_count = 0; + ofdm->sync_counter = 0; + ofdm->sync_start = true; + ofdm->clock_offset_counter = 0; + next_state = trial; + } + } + + if ((ofdm->sync_state == synced) || (ofdm->sync_state == trial)) { + ofdm->frame_count++; + + /* + * freq offset est may be too far out, and has aliases every 1/Ts, so + * we use a Unique Word to get a really solid indication of sync. + */ + ofdm->uw_errors = 0; + + for (i = 0; i < ofdm->nuwbits; i++) { + ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i]; + } + + /* + * during trial sync we don't tolerate errors so much, we look + * for 3 consecutive frames with low error rate to confirm sync + */ + if (ofdm->sync_state == trial) { + if (ofdm->uw_errors > 2) { + /* if we exceed thresh stay in trial sync */ + + ofdm->sync_counter++; + ofdm->frame_count = 0; + } + + if (ofdm->sync_counter == 2) { + /* if we get two bad frames drop sync and start again */ + + next_state = search; + ofdm->phase_est_bandwidth = high_bw; + } + + if (ofdm->frame_count == 4) { + /* three good frames, sync is OK! */ + + next_state = synced; + /* change to low bandwidth, but more accurate phase estimation */ + /* but only if not locked to high */ + + if (ofdm->phase_est_bandwidth_mode != LOCKED_PHASE_EST) { + ofdm->phase_est_bandwidth = low_bw; + } + } + } + + /* once we have synced up we tolerate a higher error rate to wait out fades */ + + if (ofdm->sync_state == synced) { + if (ofdm->uw_errors > 2) { + ofdm->sync_counter++; + } else { + ofdm->sync_counter = 0; + } + + if ((ofdm->sync_mode == autosync) && (ofdm->sync_counter > 6)) { + /* run of consecutive bad frames ... drop sync */ + + next_state = search; + ofdm->phase_est_bandwidth = high_bw; + } + } + } + + ofdm->last_sync_state = ofdm->sync_state; + ofdm->sync_state = next_state; +} + +/* + * data (streaming mode) state machine + */ +void ofdm_sync_state_machine_data_streaming(struct OFDM *ofdm, uint8_t *rx_uw) { + State next_state = ofdm->sync_state; + int i; + + ofdm->sync_start = ofdm->sync_end = 0; + + if (ofdm->sync_state == search) { + if (ofdm->timing_valid != 0) { + ofdm->sync_start = true; + ofdm->sync_counter = 0; + next_state = trial; + } + } + + ofdm->uw_errors = 0; + for (i = 0; i < ofdm->nuwbits; i++) { + ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i]; + } + + if (ofdm->sync_state == trial) { + if (ofdm->uw_errors < ofdm->bad_uw_errors) { + next_state = synced; + ofdm->packet_count = 0; + ofdm->modem_frame = ofdm->nuwframes; + } else { + ofdm->sync_counter++; + + if (ofdm->sync_counter > ofdm->np) { + next_state = search; + } + } + } + + // Note if frameperburst==0 we don't ever lose sync, which is useful for + // stream based testing or external control of state machine + + if (ofdm->sync_state == synced) { + ofdm->modem_frame++; + + if (ofdm->modem_frame >= ofdm->np) { + ofdm->modem_frame = 0; + ofdm->packet_count++; + if (ofdm->packetsperburst) { + if (ofdm->packet_count >= ofdm->packetsperburst) + next_state = search; + } + } + + } + + ofdm->last_sync_state = ofdm->sync_state; + ofdm->sync_state = next_state; +} + +/* + * data (burst mode) state machine + */ +void ofdm_sync_state_machine_data_burst(struct OFDM *ofdm, uint8_t *rx_uw) { + State next_state = ofdm->sync_state; + int i; + + ofdm->sync_start = ofdm->sync_end = 0; + + if (ofdm->sync_state == search) { + if (ofdm->timing_valid != 0) { + ofdm->sync_start = true; + ofdm->sync_counter = 0; + next_state = trial; + } + } + + ofdm->uw_errors = 0; + for (i = 0; i < ofdm->nuwbits; i++) { + ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i]; + } + + /* pre or post-amble has told us this is the start of the packet. Confirm we + have a valid frame by checking the UW after the modem frames containing + the UW have been received */ + if (ofdm->sync_state == trial) { + ofdm->sync_counter++; + if (ofdm->sync_counter == ofdm->nuwframes) { + if (ofdm->uw_errors < ofdm->bad_uw_errors) { + next_state = synced; + ofdm->packet_count = 0; + ofdm->modem_frame = ofdm->nuwframes; + } else { + next_state = search; + // reset rxbuf to make sure we only ever do a postamble loop once through same samples + ofdm->rxbufst = ofdm->nrxbufhistory; + for(int i=0; i<ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0; + ofdm->uw_fails++; + } + } + } + + if (ofdm->sync_state == synced) { + ofdm->modem_frame++; + if (ofdm->modem_frame >= ofdm->np) { + ofdm->modem_frame = 0; + ofdm->packet_count++; + if (ofdm->packetsperburst) { + if (ofdm->packet_count >= ofdm->packetsperburst) { + next_state = search; + // reset rxbuf to make sure we only ever do a postamble loop once through same samples + ofdm->rxbufst = ofdm->nrxbufhistory; + for(int i=0; i<ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0; + } + } + } + } + + ofdm->last_sync_state = ofdm->sync_state; + ofdm->sync_state = next_state; +} + + +void ofdm_sync_state_machine_voice2(struct OFDM *ofdm, uint8_t *rx_uw) { + int i; + + State next_state = ofdm->sync_state; + + ofdm->sync_start = false; + ofdm->sync_end = false; + + if (ofdm->sync_state == search) { + if (ofdm->timing_valid) { + ofdm->frame_count = 0; + ofdm->sync_counter = 0; + ofdm->sync_start = true; + ofdm->clock_offset_counter = 0; + next_state = trial; + } + } + + if ((ofdm->sync_state == synced) || (ofdm->sync_state == trial)) { + ofdm->frame_count++; + + ofdm->uw_errors = 0; + for (i = 0; i < ofdm->nuwbits; i++) { + ofdm->uw_errors += ofdm->tx_uw[i] ^ rx_uw[i]; + } + + if (ofdm->sync_state == trial) { + if (ofdm->uw_errors <= ofdm->bad_uw_errors) + next_state = synced; + else + next_state = search; + } + + if (ofdm->sync_state == synced) { + if (ofdm->uw_errors > ofdm->bad_uw_errors) { + ofdm->sync_counter++; + } else { + ofdm->sync_counter = 0; + } + + if (ofdm->sync_counter == 6) { + /* run of consecutive bad frames ... drop sync */ + next_state = search; + } + } + } + + ofdm->last_sync_state = ofdm->sync_state; + ofdm->sync_state = next_state; +} + + +/* mode based dispatcher for sync state machines */ +void ofdm_sync_state_machine(struct OFDM *ofdm, uint8_t *rx_uw) { + if (!strcmp(ofdm->state_machine, "voice1")) + ofdm_sync_state_machine_voice1(ofdm, rx_uw); + if (!strcmp(ofdm->state_machine, "data")) { + if (strcmp(ofdm->data_mode,"streaming") == 0) + ofdm_sync_state_machine_data_streaming(ofdm, rx_uw); + else + ofdm_sync_state_machine_data_burst(ofdm, rx_uw); + } + if (!strcmp(ofdm->state_machine, "voice2")) + ofdm_sync_state_machine_voice2(ofdm, rx_uw); +} + + +/*---------------------------------------------------------------------------* \ + + FUNCTIONS...: ofdm_set_sync + AUTHOR......: David Rowe + DATE CREATED: May 2018 + + External control of sync state machine. + Ensure this is called in the same thread as ofdm_sync_state_machine(). + +\*---------------------------------------------------------------------------*/ + +void ofdm_set_sync(struct OFDM *ofdm, int sync_cmd) { + assert(ofdm != NULL); + + switch (sync_cmd) { + case UN_SYNC: + /* force manual unsync, which will cause sync state machine to + have re-attempt sync */ + ofdm->sync_state = search; + /* clear rxbuf so we don't try to sync on any existing OFDM signals + in buffer */ + for (int i = 0; i < ofdm->nrxbuf; i++) ofdm->rxbuf[i] = 0.0f; + break; + case AUTO_SYNC: + /* normal operating mode - sync state machine decides when to unsync */ + ofdm->sync_mode = autosync; + break; + case MANUAL_SYNC: + /* + * allow sync state machine to sync, but not to unsync, the + * operator will decide that manually + */ + ofdm->sync_mode = manualsync; + break; + default: + assert(0); + } +} + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: ofdm_get_demod_stats() + AUTHOR......: David Rowe + DATE CREATED: May 2018 + + Fills stats structure with a bunch of demod information. Call once per + packet. + +\*---------------------------------------------------------------------------*/ + +void ofdm_get_demod_stats(struct OFDM *ofdm, struct MODEM_STATS *stats, complex float *rx_syms, int Nsymsperpacket) { + stats->Nc = ofdm->nc; + assert(stats->Nc <= MODEM_STATS_NC_MAX); + + float EsNodB = ofdm_esno_est_calc(rx_syms, Nsymsperpacket); + float SNR3kdB = ofdm_snr_from_esno(ofdm, EsNodB); + + if (strlen(ofdm->data_mode)) + /* no smoothing as we have a large number of symbols per packet */ + stats->snr_est = SNR3kdB; + else { + /* in voice modes we further smooth SNR est, fast attack, slow decay */ + if (SNR3kdB > stats->snr_est) + stats->snr_est = SNR3kdB; + else + stats->snr_est = 0.9f * stats->snr_est + 0.1f * SNR3kdB; + } + stats->sync = ((ofdm->sync_state == synced) || (ofdm->sync_state == trial)); + stats->foff = ofdm->foff_est_hz; + stats->rx_timing = ofdm->timing_est; + + float total = ofdm->frame_count * ofdm->samplesperframe; + stats->clock_offset = 0; + if (total != 0.0f) { + stats->clock_offset = ofdm->clock_offset_counter / total; + } + + stats->sync_metric = ofdm->timing_mx; + stats->pre = ofdm->pre; + stats->post = ofdm->post; + stats->uw_fails = ofdm->uw_fails; + +#ifndef __EMBEDDED__ + assert(Nsymsperpacket % ofdm->nc == 0); + int Nrowsperpacket = Nsymsperpacket/ofdm->nc; + assert(Nrowsperpacket <= MODEM_STATS_NR_MAX); + stats->nr = Nrowsperpacket; + for (int c = 0; c < ofdm->nc; c++) { + for (int r = 0; r < Nrowsperpacket; r++) { + complex float rot = rx_syms[r * ofdm->nc + c] * cmplx(ROT45); + stats->rx_symbols[r][c].real = crealf(rot); + stats->rx_symbols[r][c].imag = cimagf(rot); + } + } +#endif +} + +/* + * Assemble packet of bits from UW, payload bits, and txt bits + */ +void ofdm_assemble_qpsk_modem_packet(struct OFDM *ofdm, uint8_t modem_frame[], + uint8_t payload_bits[], uint8_t txt_bits[]) { + int s, t; + + int p = 0; + int u = 0; + + for (s = 0; s < (ofdm->bitsperpacket - ofdm->ntxtbits); s++) { + if ((u < ofdm->nuwbits) && (s == ofdm->uw_ind[u])) { + modem_frame[s] = ofdm->tx_uw[u++]; + } else { + modem_frame[s] = payload_bits[p++]; + } + } + + assert(u == ofdm->nuwbits); + assert(p == (ofdm->bitsperpacket - ofdm->nuwbits - ofdm->ntxtbits)); + + for (t = 0; s < ofdm->bitsperframe; s++, t++) { + modem_frame[s] = txt_bits[t]; + } + + assert(t == ofdm->ntxtbits); +} + +/* + * Assemble packet of symbols from UW, payload symbols, and txt bits + */ +void ofdm_assemble_qpsk_modem_packet_symbols(struct OFDM *ofdm, complex float modem_packet[], + COMP payload_syms[], uint8_t txt_bits[]) { + complex float *payload = (complex float *) &payload_syms[0]; // complex has same memory layout + int Nsymsperpacket = ofdm->bitsperpacket / ofdm->bps; + int Nuwsyms = ofdm->nuwbits / ofdm->bps; + int Ntxtsyms = ofdm->ntxtbits / ofdm->bps; + int dibit[2]; + int s, t; + + int p = 0; + int u = 0; + + assert(ofdm->bps == 2); /* this only works for QPSK at this stage (e.g. modem packet mod) */ + + for (s = 0; s < (Nsymsperpacket - Ntxtsyms); s++) { + if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) { + modem_packet[s] = ofdm->tx_uw_syms[u++]; + } else { + modem_packet[s] = payload[p++]; + } + } + + assert(u == Nuwsyms); + assert(p == (Nsymsperpacket - Nuwsyms - Ntxtsyms)); + + for (t = 0; s < Nsymsperpacket; s++, t += 2) { + dibit[1] = txt_bits[t ] & 0x1; + dibit[0] = txt_bits[t + 1] & 0x1; + modem_packet[s] = qpsk_mod(dibit); + } + + assert(t == ofdm->ntxtbits); +} + +/* + * Disassemble a received packet of symbols into UW bits and payload data symbols + */ +void ofdm_disassemble_qpsk_modem_packet(struct OFDM *ofdm, complex float rx_syms[], float rx_amps[], + COMP codeword_syms[], float codeword_amps[], short txt_bits[]) +{ + complex float *codeword = (complex float *) &codeword_syms[0]; // complex has same memory layout + int Nsymsperpacket = ofdm->bitsperpacket / ofdm->bps; + int Nuwsyms = ofdm->nuwbits / ofdm->bps; + int Ntxtsyms = ofdm->ntxtbits / ofdm->bps; + int dibit[2]; + int s, t; + + int p = 0; + int u = 0; + + assert(ofdm->bps == 2); /* this only works for QPSK at this stage */ + + for (s = 0; s < (Nsymsperpacket - Ntxtsyms); s++) { + if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) { + u++; + } else { + codeword[p] = rx_syms[s]; + codeword_amps[p] = rx_amps[s]; + p++; + } + } + + assert(u == Nuwsyms); + assert(p == (Nsymsperpacket - Nuwsyms - Ntxtsyms)); + + for (t = 0; s < Nsymsperpacket; s++, t += 2) { + qpsk_demod(rx_syms[s], dibit); + + txt_bits[t ] = dibit[1]; + txt_bits[t + 1] = dibit[0]; + } + + assert(t == ofdm->ntxtbits); +} + +/* + * Disassemble a received packet of symbols into UW bits and payload data symbols + */ +void ofdm_disassemble_qpsk_modem_packet_with_text_amps( + struct OFDM *ofdm, complex float rx_syms[], float rx_amps[], + COMP codeword_syms[], float codeword_amps[], short txt_bits[], + int* textIndex) +{ + complex float *codeword = (complex float *) &codeword_syms[0]; // complex has same memory layout + int Nsymsperpacket = ofdm->bitsperpacket / ofdm->bps; + int Nuwsyms = ofdm->nuwbits / ofdm->bps; + int Ntxtsyms = ofdm->ntxtbits / ofdm->bps; + int dibit[2]; + int s, t; + + int p = 0; + int u = 0; + + assert(ofdm->bps == 2); /* this only works for QPSK at this stage */ + assert(textIndex != NULL); + + for (s = 0; s < (Nsymsperpacket - Ntxtsyms); s++) { + if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) { + u++; + } else { + codeword[p] = rx_syms[s]; + codeword_amps[p] = rx_amps[s]; + p++; + } + } + + assert(u == Nuwsyms); + assert(p == (Nsymsperpacket - Nuwsyms - Ntxtsyms)); + + *textIndex = s; + for (t = 0; s < Nsymsperpacket; s++, t += 2) { + qpsk_demod(rx_syms[s], dibit); + + txt_bits[t ] = dibit[1]; + txt_bits[t + 1] = dibit[0]; + } + + assert(t == ofdm->ntxtbits); +} + +/* + * Extract just the UW from the packet + */ +void ofdm_extract_uw(struct OFDM *ofdm, complex float rx_syms[], float rx_amps[], uint8_t rx_uw[]) { + int Nsymsperframe = ofdm->bitsperframe / ofdm->bps; + int Nuwsyms = ofdm->nuwbits / ofdm->bps; + int dibit[2]; + int s,u; + + assert(ofdm->bps == 2); /* this only works for QPSK at this stage (e.g. UW demod) */ + + for (s = 0, u = 0; s < Nsymsperframe*ofdm->nuwframes; s++) { + if ((u < Nuwsyms) && (s == ofdm->uw_ind_sym[u])) { + qpsk_demod(rx_syms[s], dibit); + rx_uw[2 * u ] = dibit[1]; + rx_uw[2 * u + 1] = dibit[0]; + u++; + } + } + + assert(u == Nuwsyms); +} + +/* + * Pseudo-random number generator that we can implement in C with + * identical results to Octave. Returns an unsigned int between 0 + * and 32767. Used for generating test frames of various lengths. + */ +void ofdm_rand(uint16_t r[], int n) { + ofdm_rand_seed(r, n, 1); +} + +void ofdm_rand_seed(uint16_t r[], int n, uint64_t seed) { + for (int i = 0; i < n; i++) { + seed = (1103515245l * seed + 12345) % 32768; + r[i] = seed; + } +} + +void ofdm_generate_payload_data_bits(uint8_t payload_data_bits[], int n) { + uint16_t r[n]; + int i; + + ofdm_rand(r, n); + + for (i = 0; i < n; i++) { + payload_data_bits[i] = r[i] > 16384; + } +} + +void ofdm_generate_preamble(struct OFDM *ofdm, COMP *tx_preamble, int seed) { + // need to modify bits per packet to set up pre-amble of a few modem frames in length + struct OFDM ofdm_preamble; + memcpy(&ofdm_preamble, ofdm, sizeof(struct OFDM)); + ofdm_preamble.np = 1; + ofdm_preamble.bitsperpacket = ofdm_preamble.bitsperframe; + uint16_t r[ofdm_preamble.bitsperpacket]; + ofdm_rand_seed(r, ofdm_preamble.bitsperpacket, seed); + int preamble_bits[ofdm_preamble.bitsperpacket]; + for(int i=0; i<ofdm_preamble.bitsperpacket; i++) + preamble_bits[i] = r[i] > 16384; + // ensures the signal passes through hilbert clipper unchanged + ofdm_preamble.amp_scale = 1.0; + ofdm_preamble.tx_bpf_en = false; + ofdm_preamble.clip_en = false; + ofdm_mod(&ofdm_preamble, tx_preamble, preamble_bits); +} + +void ofdm_print_info(struct OFDM *ofdm) { + char *syncmode[] = { + "unsync", + "autosync", + "manualsync" + }; + char *phase_est_bandwidth_mode[] = { + "auto", + "locked_high" + }; + + fprintf(stderr, "ofdm->tx_centre = %g\n", (double)ofdm->tx_centre); + fprintf(stderr, "ofdm->rx_centre = %g\n", (double)ofdm->rx_centre); + fprintf(stderr, "ofdm->fs = %g\n", (double)ofdm->fs); + fprintf(stderr, "ofdm->ts = %g\n", (double)ofdm->ts); + fprintf(stderr, "ofdm->rs = %g\n", (double)ofdm->rs); + fprintf(stderr, "ofdm->tcp = %g\n", (double)ofdm->tcp); + fprintf(stderr, "ofdm->inv_m = %g\n", (double)ofdm->inv_m); + fprintf(stderr, "ofdm->tx_nlower = %g\n", (double)ofdm->tx_nlower); + fprintf(stderr, "ofdm->rx_nlower = %g\n", (double)ofdm->rx_nlower); + fprintf(stderr, "ofdm->doc = %g\n", (double)ofdm->doc); + fprintf(stderr, "ofdm->timing_mx_thresh = %g\n", (double)ofdm->timing_mx_thresh); + fprintf(stderr, "ofdm->nc = %d\n", ofdm->nc); + fprintf(stderr, "ofdm->np = %d\n", ofdm->np); + fprintf(stderr, "ofdm->ns = %d\n", ofdm->ns); + fprintf(stderr, "ofdm->bps = %d\n", ofdm->bps); + fprintf(stderr, "ofdm->m = %d\n", ofdm->m); + fprintf(stderr, "ofdm->ncp = %d\n", ofdm->ncp); + fprintf(stderr, "ofdm->ftwindowwidth = %d\n", ofdm->ftwindowwidth); + fprintf(stderr, "ofdm->bitsperframe = %d\n", ofdm->bitsperframe); + fprintf(stderr, "ofdm->bitsperpacket = %d\n", ofdm->bitsperpacket); + fprintf(stderr, "ofdm->rowsperframe = %d\n", ofdm->rowsperframe); + fprintf(stderr, "ofdm->samplespersymbol = %d\n", ofdm->samplespersymbol); + fprintf(stderr, "ofdm->samplesperframe = %d\n", ofdm->samplesperframe); + fprintf(stderr, "ofdm->max_samplesperframe = %d\n", ofdm->max_samplesperframe); + fprintf(stderr, "ofdm->nrxbuf = %d\n", ofdm->nrxbuf); + fprintf(stderr, "ofdm->ntxtbits = %d\n", ofdm->ntxtbits); + fprintf(stderr, "ofdm->nuwbits = %d\n", ofdm->nuwbits); + fprintf(stderr, "ofdm->foff_est_gain = %g\n", (double)ofdm->foff_est_gain); + fprintf(stderr, "ofdm->foff_est_hz = %g\n", (double)ofdm->foff_est_hz); + fprintf(stderr, "ofdm->timing_mx = %g\n", (double)ofdm->timing_mx); + fprintf(stderr, "ofdm->coarse_foff_est_hz = %g\n", (double)ofdm->coarse_foff_est_hz); + fprintf(stderr, "ofdm->timing_norm = %g\n", (double)ofdm->timing_norm); + fprintf(stderr, "ofdm->mean_amp = %g\n", (double)ofdm->mean_amp); + fprintf(stderr, "ofdm->clock_offset_counter = %d\n", ofdm->clock_offset_counter); + fprintf(stderr, "ofdm->verbose = %d\n", ofdm->verbose); + fprintf(stderr, "ofdm->sample_point = %d\n", ofdm->sample_point); + fprintf(stderr, "ofdm->timing_est = %d\n", ofdm->timing_est); + fprintf(stderr, "ofdm->timing_valid = %d\n", ofdm->timing_valid); + fprintf(stderr, "ofdm->nin = %d\n", ofdm->nin); + fprintf(stderr, "ofdm->uw_errors = %d\n", ofdm->uw_errors); + fprintf(stderr, "ofdm->sync_counter = %d\n", ofdm->sync_counter); + fprintf(stderr, "ofdm->frame_count = %d\n", ofdm->frame_count); + fprintf(stderr, "ofdm->sync_start = %s\n", ofdm->sync_start ? "true" : "false"); + fprintf(stderr, "ofdm->sync_end = %s\n", ofdm->sync_end ? "true" : "false"); + fprintf(stderr, "ofdm->sync_mode = %s\n", syncmode[ofdm->sync_mode]); + fprintf(stderr, "ofdm->timing_en = %s\n", ofdm->timing_en ? "true" : "false"); + fprintf(stderr, "ofdm->foff_est_en = %s\n", ofdm->foff_est_en ? "true" : "false"); + fprintf(stderr, "ofdm->phase_est_en = %s\n", ofdm->phase_est_en ? "true" : "false"); + fprintf(stderr, "ofdm->tx_bpf_en = %s\n", ofdm->tx_bpf_en ? "true" : "false"); + fprintf(stderr, "ofdm->rx_bpf_en = %s\n", ofdm->rx_bpf_en ? "true" : "false"); + fprintf(stderr, "ofdm->dpsk_en = %s\n", ofdm->dpsk_en ? "true" : "false"); + fprintf(stderr, "ofdm->phase_est_bandwidth_mode = %s\n", phase_est_bandwidth_mode[ofdm->phase_est_bandwidth_mode]); +} + +// hilbert clipper +void ofdm_clip(complex float tx[], float clip_thresh, int n) { + complex float sam; + float mag; + int i; + + for(i=0; i<n; i++) { + sam = tx[i]; + mag = cabsf(sam); + if (mag > clip_thresh) { + sam *= clip_thresh/mag; + } + tx[i] = sam; + } + } |
