/*---------------------------------------------------------------------------*\ FILE........: fsk_demod.c AUTHOR......: Brady O'Brien and David Rowe DATE CREATED: 8 January 2016 Command line FSK demodulator. Reads in FSK samples, writes demodulated output bits. \*---------------------------------------------------------------------------*/ /* Copyright (C) 2016 David Rowe All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, see . */ #define TEST_FRAME_SIZE 100 /* must match fsk_get_test_bits.c */ #include #include #include #include #include #include #include #include "codec2_fdmdv.h" #include "fsk.h" #include "modem_stats.h" #include "mpdecode_core.h" /* cleanly exit when we get a SIGTERM */ void sig_handler(int signo) { if (signo == SIGTERM) { exit(0); } } int main(int argc, char *argv[]) { struct FSK *fsk; struct MODEM_STATS stats; int Fs, Rs, M, P, stats_ctr, stats_loop; float loop_time; int enable_stats = 0; FILE *fin, *fout; uint8_t *bitbuf = NULL; int16_t *rawbuf; COMP *modbuf; float *rx_filt = NULL; float *llrs = NULL; int i, j, Ndft; int soft_dec_mode = 0; stats_loop = 0; int complex_input = 1, bytes_per_sample = 2; int stats_rate = 8; int testframe_mode = 0; P = 8; /* default */ M = 0; int fsk_lower = 0; int fsk_upper = 0; int user_fsk_lower = 0; int user_fsk_upper = 0; int nsym = FSK_DEFAULT_NSYM; int mask = 0; int tone_separation = 100; int o = 0; int opt_idx = 0; while (o != -1) { static struct option long_opts[] = { {"help", no_argument, 0, 'h'}, {"conv", required_argument, 0, 'p'}, {"cs16", no_argument, 0, 'c'}, {"cu8", no_argument, 0, 'd'}, {"fsk_lower", required_argument, 0, 'b'}, {"fsk_upper", required_argument, 0, 'u'}, {"stats", optional_argument, 0, 't'}, {"soft-dec", no_argument, 0, 's'}, {"testframes", no_argument, 0, 'f'}, {"nsym", required_argument, 0, 'n'}, {"mask", required_argument, 0, 'm'}, {0, 0, 0, 0}}; o = getopt_long(argc, argv, "fhlp:cdt::sb:u:m", long_opts, &opt_idx); switch (o) { case 'c': complex_input = 2; bytes_per_sample = 2; break; case 'd': complex_input = 2; bytes_per_sample = 1; break; case 'f': testframe_mode = 1; break; case 't': enable_stats = 1; if (optarg != NULL) { stats_rate = atoi(optarg); if (stats_rate == 0) { stats_rate = 8; } } break; case 's': soft_dec_mode = 1; break; case 'p': P = atoi(optarg); break; case 'b': if (optarg != NULL) { fsk_lower = atoi(optarg); user_fsk_lower = 1; } break; case 'u': if (optarg != NULL) { fsk_upper = atoi(optarg); user_fsk_upper = 1; } break; case 'n': if (optarg != NULL) { nsym = atoi(optarg); } break; case 'm': mask = 1; tone_separation = atoi(optarg); break; case 'h': case '?': goto helpmsg; break; } } int dx = optind; if ((argc - dx) < 5) { fprintf(stderr, "Too few arguments\n"); goto helpmsg; } if ((argc - dx) > 5) { fprintf(stderr, "Too many arguments\n"); helpmsg: fprintf(stderr, "usage: %s [options] (2|4) SampleRate SymbolRate InputModemRawFile " "OutputFile\n", argv[0]); fprintf(stderr, " -c --cs16 The raw input file will be in complex signed " "16 bit format.\n"); fprintf(stderr, " -d --cu8 The raw input file will be in complex " "unsigned 8 bit format.\n"); fprintf(stderr, " If neither -c nor -d are used, the input " "should be in signed 16 bit format.\n"); fprintf(stderr, " -f --testframes Testframe mode, prints stats to stderr when a " "testframe is detected, if -t (JSON) \n"); fprintf(stderr, " is enabled stats will be in JSON format\n"); fprintf( stderr, " -t[r] --stats=[r] Print out modem statistics to stderr in JSON.\n"); fprintf(stderr, " r, if provided, sets the number of modem " "frames between statistic printouts.\n"); fprintf(stderr, " -s --soft-dec The output file will be in a soft-decision " "format, with one 32-bit float per bit.\n"); fprintf(stderr, " If -s is not used, the output will be in a 1 " "byte-per-bit format.\n"); fprintf(stderr, " -p P Number of timing offsets we have to choose " "from, default %d.\n", FSK_DEFAULT_P); fprintf(stderr, " Fs/Rs/P must be an integer. Smaller values " "result in faster operation, but\n"); fprintf(stderr, " coarse sampling. Try to keep >= 8\n"); fprintf(stderr, " processing but lower demodulation " "performance. Default %d\n", FSK_DEFAULT_P); fprintf(stderr, " --fsk_lower freq lower limit of freq estimator (default 0 for " "real input, -Fs/2 for complex input)\n"); fprintf( stderr, " --fsk_upper freq upper limit of freq estimator (default Fs/2)\n"); fprintf(stderr, " --nsym Nsym number of symbols used for estimators. " "Default %d\n", FSK_DEFAULT_NSYM); fprintf(stderr, " --mask TxFreqSpace Use \"mask\" freq estimator (default is " "\"peak\" estimator)\n"); exit(1); } /* Extract parameters */ M = atoi(argv[dx]); Fs = atoi(argv[dx + 1]); Rs = atoi(argv[dx + 2]); if ((M != 2) && (M != 4)) { fprintf(stderr, "Mode %d is not valid. Mode must be 2 or 4.\n", M); goto helpmsg; } /* Open files */ if (strcmp(argv[dx + 3], "-") == 0) { fin = stdin; } else { fin = fopen(argv[dx + 3], "r"); } if (strcmp(argv[dx + 4], "-") == 0) { fout = stdout; } else { fout = fopen(argv[dx + 4], "w"); } /* set up FSK */ fsk = fsk_create_hbr(Fs, Rs, M, P, nsym, FSK_NONE, tone_separation); /* set freq estimator limits */ if (!user_fsk_lower) { if (complex_input == 1) fsk_lower = 0; else fsk_lower = -Fs / 2; } if (!user_fsk_upper) { fsk_upper = Fs / 2; } fprintf(stderr, "Setting estimator limits to %d to %d Hz.\n", fsk_lower, fsk_upper); fsk_set_freq_est_limits(fsk, fsk_lower, fsk_upper); fsk_set_freq_est_alg(fsk, mask); if (fin == NULL || fout == NULL || fsk == NULL) { fprintf(stderr, "Couldn't open files\n"); exit(1); } /* set up testframe mode */ int testframecnt, bitcnt, biterr, testframe_detected; uint8_t *bitbuf_tx = NULL, *bitbuf_rx = NULL; if (testframe_mode) { bitbuf_tx = (uint8_t *)malloc(sizeof(uint8_t) * TEST_FRAME_SIZE); assert(bitbuf_tx != NULL); bitbuf_rx = (uint8_t *)malloc(sizeof(uint8_t) * TEST_FRAME_SIZE); assert(bitbuf_rx != NULL); /* Generate known tx frame from known seed */ srand(158324); for (i = 0; i < TEST_FRAME_SIZE; i++) { bitbuf_tx[i] = rand() & 0x1; bitbuf_rx[i] = 0; } testframecnt = 0; bitcnt = 0; biterr = 0; } if (enable_stats) { loop_time = ((float)fsk_nin(fsk)) / ((float)Fs); stats_loop = (int)(1 / (stats_rate * loop_time)); stats_ctr = 0; } /* allocate buffers for processing */ if (soft_dec_mode) { rx_filt = (float *)malloc(sizeof(float) * fsk->mode * fsk->Nsym); assert(rx_filt != NULL); llrs = (float *)malloc(sizeof(float) * fsk->Nbits); assert(llrs != NULL); } else { bitbuf = (uint8_t *)malloc(sizeof(uint8_t) * fsk->Nbits); assert(bitbuf != NULL); } rawbuf = (int16_t *)malloc(bytes_per_sample * (fsk->N + fsk->Ts * 2) * complex_input); modbuf = (COMP *)malloc(sizeof(COMP) * (fsk->N + fsk->Ts * 2)); /* set up signal handler so we can terminate gracefully */ if (signal(SIGTERM, sig_handler) == SIG_ERR) { printf("\ncan't catch SIGTERM\n"); } /* Demodulate! */ while (fread(rawbuf, bytes_per_sample * complex_input, fsk_nin(fsk), fin) == fsk_nin(fsk)) { /* convert input to a buffer of floats. Note scaling isn't really necessary * for FSK */ if (complex_input == 1) { /* S16 real input */ for (i = 0; i < fsk_nin(fsk); i++) { modbuf[i].real = ((float)rawbuf[i]) / FDMDV_SCALE; modbuf[i].imag = 0.0; } } else { if (bytes_per_sample == 1) { /* U8 complex */ uint8_t *rawbuf_u8 = (uint8_t *)rawbuf; for (i = 0; i < fsk_nin(fsk); i++) { modbuf[i].real = ((float)rawbuf_u8[2 * i] - 127.0) / 128.0; modbuf[i].imag = ((float)rawbuf_u8[2 * i + 1] - 127.0) / 128.0; } } else { /* S16 complex */ for (i = 0; i < fsk_nin(fsk); i++) { modbuf[i].real = ((float)rawbuf[2 * i]) / FDMDV_SCALE; modbuf[i].imag = ((float)rawbuf[2 * i + 1] / FDMDV_SCALE); } } } if (soft_dec_mode) { int bps = log2(fsk->mode); assert(fsk->Nbits == bps * fsk->Nsym); /* output bit LLRs */ fsk_demod_sd(fsk, rx_filt, modbuf); fsk_rx_filt_to_llrs(llrs, rx_filt, fsk->v_est, fsk->SNRest, fsk->mode, fsk->Nsym); } else { fsk_demod(fsk, bitbuf, modbuf); } testframe_detected = 0; if (testframe_mode) { assert(soft_dec_mode == 0); /* attempt to find a testframe and update stats */ /* update silding window of input bits */ int errs; for (j = 0; j < fsk->Nbits; j++) { for (i = 0; i < TEST_FRAME_SIZE - 1; i++) { bitbuf_rx[i] = bitbuf_rx[i + 1]; } bitbuf_rx[TEST_FRAME_SIZE - 1] = bitbuf[j]; /* compare to know tx frame. If they are time aligned, there will be a fairly low bit error rate */ errs = 0; for (i = 0; i < TEST_FRAME_SIZE; i++) { if (bitbuf_rx[i] != bitbuf_tx[i]) { errs++; } } if (errs < 0.1 * TEST_FRAME_SIZE) { /* OK, we have a valid test frame sync, so lets count errors */ testframe_detected = 1; testframecnt++; bitcnt += TEST_FRAME_SIZE; biterr += errs; if (enable_stats == 0) { fprintf(stderr, "errs: %d FSK BER %f, bits tested %d, bit errors %d\n", errs, ((float)biterr / (float)bitcnt), bitcnt, biterr); } } } } /* if (testframe_mode) ... */ if (enable_stats) { if ((stats_ctr < 0) || testframe_detected) { fsk_get_demod_stats(fsk, &stats); /* Print standard 2FSK stats */ fprintf(stderr, "{"); time_t seconds = time(NULL); fprintf(stderr, "\"secs\": %ld, \"EbNodB\": %5.1f, \"ppm\": %4d,", (long)seconds, stats.snr_est, (int)fsk->ppm); float *f_est; if (fsk->freq_est_type) f_est = fsk->f2_est; else f_est = fsk->f_est; fprintf(stderr, " \"f1_est\":%.1f, \"f2_est\":%.1f", f_est[0], f_est[1]); /* Print 4FSK stats if in 4FSK mode */ if (fsk->mode == 4) { fprintf(stderr, ", \"f3_est\":%.1f, \"f4_est\":%.1f", f_est[2], f_est[3]); } if (testframe_mode == 0) { /* Print the eye diagram */ fprintf(stderr, ",\t\"eye_diagram\":["); for (i = 0; i < stats.neyetr; i++) { fprintf(stderr, "["); for (j = 0; j < stats.neyesamp; j++) { fprintf(stderr, "%f ", stats.rx_eye[i][j]); if (j < stats.neyesamp - 1) fprintf(stderr, ","); } fprintf(stderr, "]"); if (i < stats.neyetr - 1) fprintf(stderr, ","); } fprintf(stderr, "],"); /* Print a sample of the FFT from the freq estimator */ fprintf(stderr, "\"samp_fft\":["); Ndft = fsk->Ndft / 2; for (i = 0; i < Ndft; i++) { fprintf(stderr, "%f ", (fsk->Sf)[i]); if (i < Ndft - 1) fprintf(stderr, ","); } fprintf(stderr, "]"); } if (testframe_mode) { fprintf(stderr, ", \"frames\":%d, \"bits\":%d, \"errs\":%d", testframecnt, bitcnt, biterr); } fprintf(stderr, "}\n"); if (stats_ctr < 0) { stats_ctr = stats_loop; } } if (testframe_mode == 0) { stats_ctr--; } } if (soft_dec_mode) { fwrite(llrs, sizeof(float), fsk->Nbits, fout); } else { fwrite(bitbuf, sizeof(uint8_t), fsk->Nbits, fout); } if (fout == stdin) { fflush(fout); } } /* while(fread ...... */ if (testframe_mode) { free(bitbuf_tx); free(bitbuf_rx); } if (soft_dec_mode) { free(rx_filt); free(llrs); } else { free(bitbuf); } free(rawbuf); free(modbuf); fclose(fin); fclose(fout); fsk_destroy(fsk); return 0; }