/*---------------------------------------------------------------------------*\ FILE........: newamp1.c AUTHOR......: David Rowe DATE CREATED: Jan 2017 Quantisation functions for the sinusoidal coder, using "newamp1" algorithm that resamples variable rate L [Am} to a fixed rate K then VQs. \*---------------------------------------------------------------------------*/ /* Copyright David Rowe 2017 All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, see . */ #include #include #include #include #include #include "defines.h" #include "phase.h" #include "quantise.h" #include "mbest.h" #include "newamp1.h" /*---------------------------------------------------------------------------*\ FUNCTION....: interp_para() AUTHOR......: David Rowe DATE CREATED: Jan 2017 General 2nd order parabolic interpolator. Used splines originally, but this is much simpler and we don't need much accuracy. Given two vectors of points xp and yp, find interpolated values y at points x. \*---------------------------------------------------------------------------*/ void interp_para(float y[], float xp[], float yp[], int np, float x[], int n) { assert(np >= 3); int k,i; float xi, x1, y1, x2, y2, x3, y3, a, b; k = 0; for (i=0; iL; m++) { AmdB[m] = 20.0*log10f(model->A[m]+1E-16); if (AmdB[m] > AmdB_peak) { AmdB_peak = AmdB[m]; } rate_L_sample_freqs_kHz[m] = m*model->Wo*(c2const->Fs/2000.0)/M_PI; //printf("m: %d AmdB: %f AmdB_peak: %f sf: %f\n", m, AmdB[m], AmdB_peak, rate_L_sample_freqs_kHz[m]); } /* clip between peak and peak -50dB, to reduce dynamic range */ for(m=1; m<=model->L; m++) { if (AmdB[m] < (AmdB_peak-50.0)) { AmdB[m] = AmdB_peak-50.0; } } interp_para(rate_K_vec, &rate_L_sample_freqs_kHz[1], &AmdB[1], model->L, rate_K_sample_freqs_kHz, K); } /*---------------------------------------------------------------------------*\ FUNCTION....: rate_K_mbest_encode AUTHOR......: David Rowe DATE CREATED: Jan 2017 Two stage rate K newamp1 VQ quantiser using mbest search. \*---------------------------------------------------------------------------*/ float rate_K_mbest_encode(int *indexes, float *x, float *xq, int ndim, int mbest_entries) { int i, j, n1, n2; const float *codebook1 = newamp1vq_cb[0].cb; const float *codebook2 = newamp1vq_cb[1].cb; struct MBEST *mbest_stage1, *mbest_stage2; float target[ndim]; int index[MBEST_STAGES]; float mse, tmp; /* codebook is compiled for a fixed K */ assert(ndim == newamp1vq_cb[0].k); mbest_stage1 = mbest_create(mbest_entries); mbest_stage2 = mbest_create(mbest_entries); for(i=0; ilist[j].index[0]; for(i=0; ilist[0].index[1]; n2 = mbest_stage2->list[0].index[0]; mse = 0.0; for (i=0;iL; m++) { rate_L_sample_freqs_kHz[m] = m*model->Wo*(c2const->Fs/2000.0)/M_PI; } interp_para(&AmdB[1], rate_K_sample_freqs_kHz_term, rate_K_vec_term, K+2, &rate_L_sample_freqs_kHz[1], model->L); for(m=1; m<=model->L; m++) { model->A[m] = POW10F(AmdB[m]/20.0); // printf("m: %d f: %f AdB: %f A: %f\n", m, rate_L_sample_freqs_kHz[m], AmdB[m], model->A[m]); } } /*---------------------------------------------------------------------------*\ FUNCTION....: determine_phase AUTHOR......: David Rowe DATE CREATED: Jan 2017 Given a magnitude spectrum determine a phase spectrum, used for phase synthesis with newamp1. \*---------------------------------------------------------------------------*/ void determine_phase(C2CONST *c2const, COMP H[], MODEL *model, int Nfft, codec2_fft_cfg fwd_cfg, codec2_fft_cfg inv_cfg) { int i,m,b; int Ns = Nfft/2+1; float Gdbfk[Ns], sample_freqs_kHz[Ns], phase[Ns]; float AmdB[MAX_AMP+1], rate_L_sample_freqs_kHz[MAX_AMP+1]; for(m=1; m<=model->L; m++) { assert(model->A[m] != 0.0); AmdB[m] = 20.0*log10f(model->A[m]); rate_L_sample_freqs_kHz[m] = (float)m*model->Wo*(c2const->Fs/2000.0)/M_PI; } for(i=0; iFs/1000.0)*(float)i/Nfft; } interp_para(Gdbfk, &rate_L_sample_freqs_kHz[1], &AmdB[1], model->L, sample_freqs_kHz, Ns); mag_to_phase(phase, Gdbfk, Nfft, fwd_cfg, inv_cfg); for(m=1; m<=model->L; m++) { b = floorf(0.5+m*model->Wo*Nfft/(2.0*M_PI)); H[m].real = cosf(phase[b]); H[m].imag = sinf(phase[b]); } } /*---------------------------------------------------------------------------* \ FUNCTION....: determine_autoc AUTHOR......: David Rowe DATE CREATED: April 2020 Determine autocorrelation coefficients from model params, for machine learning experiments. \*---------------------------------------------------------------------------*/ void determine_autoc(C2CONST *c2const, float Rk[], int order, MODEL *model, int Nfft, codec2_fft_cfg fwd_cfg, codec2_fft_cfg inv_cfg) { int i,m; int Ns = Nfft/2+1; float Gdbfk[Ns], sample_freqs_kHz[Ns]; float AmdB[MAX_AMP+1], rate_L_sample_freqs_kHz[MAX_AMP+1]; /* interpolate in the log domain */ for(m=1; m<=model->L; m++) { assert(model->A[m] != 0.0); AmdB[m] = 20.0*log10f(model->A[m]); rate_L_sample_freqs_kHz[m] = (float)m*model->Wo*(c2const->Fs/2000.0)/M_PI; } for(i=0; iFs/1000.0)*(float)i/Nfft; } interp_para(Gdbfk, &rate_L_sample_freqs_kHz[1], &AmdB[1], model->L, sample_freqs_kHz, Ns); COMP S[Nfft], R[Nfft]; /* install negative frequency components, convert to mag squared of spectrum */ S[0].real = pow(10.0, Gdbfk[0]/10.0); S[0].imag = 0.0; for(i=1; ivoiced) { int index = encode_log_Wo(c2const, model->Wo, 6); if (index == 0) { index = 1; } indexes[3] = index; } else { indexes[3] = 0; } } /*---------------------------------------------------------------------------*\ FUNCTION....: newamp1_interpolate AUTHOR......: David Rowe DATE CREATED: Jan 2017 \*---------------------------------------------------------------------------*/ void newamp1_interpolate(float interpolated_surface_[], float left_vec[], float right_vec[], int K) { int i, k; int M = 4; float c; /* (linearly) interpolate 25Hz amplitude vectors back to 100Hz */ for(i=0,c=1.0; i