1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
% cohpsk_plots.m
% David Rowe Feb 2017
%
% Generate some plots for chps modem blog post
rand("seed",1);
% Multipath with simple unfiltered BPSK signal
N = 100; % number of symbols
M = 4; % oversample rate
tx_bits = rand(1,N) > 0.5;
tx_symbols = 2*tx_bits - 1;
tx = zeros(1,N*M);
for i=1:N
tx((i-1)*M+1:i*M) = tx_symbols(i);
end
h = [0 0 0 0 0.5]; % model of second path
rx1 = tx;
rx2 = filter(h,1,tx);
rx = rx1 + rx2;
% Multipath in time domain
figure(1); clf;
subplot(311)
plot(rx1, "linewidth", 4)
axis([0 10*M+1 -2 2]);
subplot(312)
plot(rx2, "linewidth", 4)
axis([0 10*M+1 -2 2]);
subplot(313)
plot(rx, "linewidth", 4)
axis([0 10*M+1 -2 2]);
xlabel('Time');
print("cohpsk_multipath_time.png", "-dpng", "-S600,440", "-F:8")
% Multipath channel magnitude and phase response against frequency
h = [1 0 0 0 0.5]; % model of two path multipath channel
H = freqz(h,1,100);
figure(2); clf;
subplot(211)
plot(20*log10(abs(H)), "linewidth", 4)
title('Amplitude (dB)');
subplot(212)
plot(angle(H), "linewidth", 4)
title('Phase (rads)');
%axis([0 500 -2 2]);
xlabel('Frequency');
print("cohpsk_multipath_channel.png", "-dpng", "-S600,440", "-F:8")
% Effective of 1 sample multipath for different symbols lengths
h = [1 0 0 0 0.5]; % model of two path multipath channel
M1 = 2;
M2 = 20;
tx1 = zeros(1,N*M1);
tx2 = zeros(1,N*M2);
for i=1:N
tx1((i-1)*M1+1:i*M1) = tx_symbols(i);
tx2((i-1)*M2+1:i*M2) = tx_symbols(i);
end
rx1 = filter(h,1,tx1);
rx2 = filter(h,1,tx2);
figure(3); clf;
subplot(211)
plot(rx1, "linewidth", 4)
axis([0 10*M1+1 -2 2]);
title('1ms multipath with 2ms symbols')
subplot(212)
plot(rx2, "linewidth", 4)
axis([0 10*M2+1 -2 2]);
title('1ms multipath with 20ms symbols')
xlabel('Time');
print("cohpsk_multipath_symbol_length.png", "-dpng", "-S600,440", "-F:8")
% DBPSK --------------------------------------------------
N = 10;
tx_bits = rand(1,N) > 0.5;
bpsk = 2*tx_bits - 1;
prev_bpsk = 1;
for i=1:N
% BPSK -> DBPSK
dbpsk(i) = bpsk(i) * (-prev_bpsk);
prev_bpsk = bpsk(i);
% oversampling
tx_bpsk((i-1)*M+1:i*M) = bpsk(i);
tx_dbpsk((i-1)*M+1:i*M) = dbpsk(i);
end
figure(4); clf;
subplot(211);
plot(tx_bpsk, "linewidth", 4)
axis([0 10*M+1 -2 2]);
title('Tx BPSK');
subplot(212);
plot(tx_dbpsk, "linewidth", 4)
axis([0 10*M+1 -2 2]);
title('Tx DBPSK');
print("cohpsk_dbpsk1.png", "-dpng", "-S600,440", "-F:8")
dbpsk *= -1;
prev_rx = 1;
for i=1:N
% rx DBPSK -> PSK
bpsk(i) = dbpsk(i) * (prev_rx);
prev_rx = bpsk(i);
% oversampling
rx_bpsk((i-1)*M+1:i*M) = bpsk(i);
rx_dbpsk((i-1)*M+1:i*M) = dbpsk(i);
end
figure(5); clf;
subplot(211);
plot(rx_dbpsk, "linewidth", 4)
axis([0 10*M+1 -2 2]);
title('Rx DBPSK with 180 deg phase shift');
subplot(212);
plot(rx_bpsk, "linewidth", 4)
axis([0 10*M+1 -2 2]);
title('Rx BPSK');
print("cohpsk_dbpsk2.png", "-dpng", "-S600,440", "-F:8")
|