1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
% estsnr.m
% David Rowe May 2017
%
% estimate SNR of a sinewave in noise
function snr_dB = estsnr(x, Fs=8000, Nbw = 3000)
[nr nc] = size(x);
if nr == 1
x = x';
end
% find peak in +ve side of spectrum, ignoring DC
L = length(x);
X = abs(fft(x));
st = floor(0.05*L); en = floor(0.45*L);
[A mx_ind]= max(X(st:en));
mx_ind += st;
% signal energy might be spread by doppler, so sum energy
% in frequencies +/- 1%
s_st = floor(mx_ind*0.99); s_en = floor(mx_ind*1.01);
S = sum(X(s_st:s_en).^2);
% real signal, so -ve power is the same
S = 2*S;
SdB = 10*log10(S);
printf("Signal Power S: %3.2f dB\n", SdB);
% locate a band of noise next to it and find power in band
st = floor(mx_ind+0.05*(L/2));
en = st + floor(0.1*(L/2));
N = sum(X(st:en).^2);
% scale this to obtain total noise power across total bandwidth
N *= L/(en-st);
NdB = 10*log10(N);
printf("Noise Power N: %3.2f dB\n", NdB);
% scale noise to designed noise bandwidth /2 fudge factor as its a
% real signal, wish I had a better way to explain that!
NodB = NdB - 10*log10(Fs/2);
NscaleddB = NodB + 10*log10(Nbw);
snr_dB = SdB - NscaleddB;
figure(1); clf;
plot(20*log10(X(1:L/2)),'b');
hold on;
plot([s_st s_en], [NdB NdB]- 10*log10(L), 'r');
plot([st en], [NdB NdB]- 10*log10(L), 'r');
hold off;
top = 10*ceil(SdB/10);
bot = NodB - 20;
axis([1 L/2 bot top]);
grid
grid("minor")
endfunction
|