aboutsummaryrefslogtreecommitdiff
path: root/octave/mfsk.m
blob: 0414b5e67cf0aedd3155d6a21169d79dcd59c513 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
% mfsk.m
% David Rowe Nov 2015

% Simulation to test m=2 and m=4 FSK demod


1;

function sim_out = fsk_ber_test(sim_in)
  Fs        = 96000;
  M         = sim_in.M;
  Rs        = sim_in.Rs;
  Ts        = Fs/Rs;
  verbose   = sim_in.verbose;

  nbits     = sim_in.nbits;
  nsym      = sim_in.nbits*2/M;
  nsam      = nsym*Ts;
  EsNodB    = sim_in.EbNodB + 10*log10(M/2);

  % printf("M: %d nbits: %d nsym: %d\n", M, nbits, nsym);

  if M == 2
    f(1) = -Rs/2;
    f(2) =  Rs/2;
  end
  if M == 4
    f(1) = -3*Rs/2;
    f(2) = -Rs/2;
    f(3) =  Rs/2;
    f(4) =  3*Rs/2;
  end

  % simulate over a range of Eb/No values

  for ne = 1:length(EsNodB)
    Nerrs = Terrs = Tbits = 0;

    aEsNodB = EsNodB(ne);
    EsNo = 10^(aEsNodB/10);
    variance = Fs/(Rs*EsNo);

    % Modulator -------------------------------

    tx_bits = round(rand(1, nbits));
    tx = zeros(1,nsam);
    tx_phase = 0;

    for i=1:nsym
      if M == 2
        tone = tx_bits(i) + 1;
      else
        tone = (tx_bits(2*(i-1)+1:2*i) * [2 1]') + 1;
      end

      tx_phase_vec = tx_phase + (1:Ts)*2*pi*f(tone)/Fs;
      tx((i-1)*Ts+1:i*Ts) = exp(j*tx_phase_vec);
      tx_phase = tx_phase_vec(Ts) - floor(tx_phase_vec(Ts)/(2*pi))*2*pi;
    end
  
    % Channel ---------------------------------

    % We use complex (single sided) channel simulation, as it's convenient
    % for the FM simulation.

    noise = sqrt(variance/2)*(randn(1,nsam) + j*randn(1,nsam));
    rx    = tx + noise;
    if verbose > 1
      printf("EbNo: %f Eb: %f var No: %f EbNo (meas): %f\n", 
      EbNo, var(tx)*Ts/Fs, var(noise)/Fs, (var(tx)*Ts/Fs)/(var(noise)/Fs));
    end
 
    % Demodulator -----------------------------

    % non-coherent FSK demod

    rx_bb = rx;
    dc = zeros(M,nsam);
    for m=1:M
      dc(m,:) = rx_bb .* exp(-j*(0:nsam-1)*2*pi*f(m)/Fs);
    end

    rx_bits = zeros(1, nsym);
    for i=1:nsym
      st = (i-1)*Ts+1;
      en = st+Ts-1;
      for m=1:M
        int(m,i) = abs(sum(dc(m,st:en)));
      end
      if m == 2
        rx_bits(i) = int(1,i) < int(2,i);
      else
        [max_amp tone] = max([int(1,i) int(2,i) int(3,i) int(4,i)]);
        if tone == 1
          rx_bits(2*(i-1)+1:2*i) = [0 0];
        end
        if tone == 2
          rx_bits(2*(i-1)+1:2*i) = [0 1];
        end
        if tone == 3
          rx_bits(2*(i-1)+1:2*i) = [1 0];
        end
        if tone == 4
          rx_bits(2*(i-1)+1:2*i) = [1 1];
        end
     end
    end
  
    error_positions = xor(rx_bits, tx_bits);
    Nerrs = sum(error_positions);
    Terrs += Nerrs;
    Tbits += length(error_positions);

    TERvec(ne) = Terrs;
    BERvec(ne) = Terrs/Tbits;

    if verbose > 1
      figure(2)
      clf
      Rx = 10*log10(abs(fft(rx)));
      plot(Rx(1:Fs/2));
      axis([1 Fs/2 0 50]);

      figure(3)
      clf;
      subplot(211)
      plot(real(rx_bb(1:Ts*20)))
      subplot(212)
      Rx_bb = 10*log10(abs(fft(rx_bb)));
      plot(Rx_bb(1:3000));
      axis([1 3000 0 50]);

      figure(4);
      subplot(211)
      stem(abs(mark_int(1:100)));
      subplot(212)
      stem(abs(space_int(1:100)));   
    end

    if verbose
      printf("EbNo (db): %3.2f Terrs: %d BER: %4.3f \n", aEsNodB - 10*log10(M/2), Terrs, Terrs/Tbits);
    end
  end

  sim_out.TERvec = TERvec;
  sim_out.BERvec = BERvec;
endfunction


function run_fsk_curves
  sim_in.M         = 2;
  sim_in.Rs        = 1200;
  sim_in.nbits     = 12000;
  sim_in.EbNodB    = 0:2:20;
  sim_in.verbose   = 1;
  
  EbNo  = 10 .^ (sim_in.EbNodB/10);
  fsk_theory.BERvec = 0.5*exp(-EbNo/2); % non-coherent BFSK demod
  fsk2_sim = fsk_ber_test(sim_in);

  sim_in.M = 4;
  fsk4_sim = fsk_ber_test(sim_in);

  % BER v Eb/No curves

  figure(1); 
  clf;
  semilogy(sim_in.EbNodB, fsk_theory.BERvec,'r;2FSK theory;')
  hold on;
  semilogy(sim_in.EbNodB, fsk2_sim.BERvec,'g;2FSK sim;')
  semilogy(sim_in.EbNodB, fsk4_sim.BERvec,'b;4FSK sim;')
  hold off;
  grid("minor");
  axis([min(sim_in.EbNodB) max(sim_in.EbNodB) 1E-4 1])
  legend("boxoff");
  xlabel("Eb/No (dB)");
  ylabel("Bit Error Rate (BER)")

end


function run_fsk_single
  sim_in.M         = 4;
  sim_in.Rs        = 1200;
  sim_in.nbits     = 5000;
  sim_in.EbNodB    = 8;
  sim_in.verbose   = 1;

  fsk_sim = fsk_ber_test(sim_in);
endfunction


rand('state',1); 
randn('state',1);
graphics_toolkit ("gnuplot");

run_fsk_curves
%run_fsk_single