1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
|
% tcohpsk.m
% David Rowe Oct 2014
%
% Octave coherent PSK modem script that has two modes:
%
% i) tests the C port of the coherent PSK modem. This script loads
% the output of unittest/tcohpsk.c and compares it to the output of
% the reference versions of the same modem written in Octave.
%
% (ii) Runs the Octave version of the cohpsk modem to tune and develop
% it, including extensive channel simulations such as AWGN noise,
% fading/HF, frequency offset, frequency drift, and tx/rx sample
% rate differences.
% TODO:
%
% [X] Test
% [X] AWGN channel
% [X] freq offset
% [X] fading channel
% [X] freq drift
% [X] timing drift
% [X] tune perf/impl loss to get closer to ideal
% [X] linear interp of phase for better fading perf
% [X] freq offset/drift feedback loop
% [X] PAPR measurement and reduction
% [X] false sync
% [X] doesn't sync up on noise (used EsNo = -12)
% [X] similar but invalid signal like huge f off
% [X] ability to "unsync" when signal disappears
% [ ] some calibrated tests against FreeDV 1600
% + compare sound quality at various Es/Nos
% [ ] sync
% + set some req & implement
% [ ] way to handle eom w/o nasties
% + like mute output when signal has gone or v low snr
% + instantaneous snr
% [X] ssb tx filter with 3dB passband ripple
% + diverisity helped for AWGN BER 0.024 down to 0.016
% + Only a small change in fading perf with filter on/off
% + however other filters may have other effects, should test this,
% e.g. scatter plots, some sort of BER metric?
% [X] EsNo estimation
% [ ] filter reqd with compression?
% + make sure not too much noise passed into noise floor
% [X] different diversity combination
% + taking largest symbol didn't help
% [X] histogram of bit errors
% + lot of data
% + ssb filter
% + compression
% + make sure it's flat with many errors
pkg load signal;
more off;
global passes = 0;
global fails = 0;
cohpsk_dev;
fdmdv_common;
autotest;
rand('state',1);
randn('state',1);
% select which test ----------------------------------------------------------
test = 'compare to c';
%test = 'awgn';
%test = 'fading';
% some parameters that can be over ridden, e.g. to disable parts of modem
initial_sync = 0; % setting this to 1 put us straight into sync w/o freq offset est
ftrack_en = 1; % set to 1 to enable freq tracking
ssb_tx_filt = 0; % set to 1 to to simulate SSB tx filter with passband ripple
Fs = 7500;
% predefined tests ....
if strcmp(test, 'compare to c')
frames = 30;
foff = 58.7;
dfoff = -0.5/Fs;
EsNodB = 8;
fading_en = 0;
hf_delay_ms = 2;
compare_with_c = 1;
sample_rate_ppm = -1500;
ssb_tx_filt = 0;
end
% should be BER around 0.015 to 0.02
if strcmp(test, 'awgn')
frames = 100;
foff = 58.7;
dfoff = -0.5/Fs;
EsNodB = 8;
fading_en = 0;
hf_delay_ms = 2;
compare_with_c = 0;
sample_rate_ppm = 0;
end
% Similar to AWGN - should be BER around 0.015 to 0.02
if strcmp(test, 'fading');
frames = 100;
foff = -25;
dfoff = 0.5/Fs;
EsNodB = 12;
fading_en = 1;
hf_delay_ms = 2;
compare_with_c = 0;
sample_rate_ppm = 0;
end
EsNo = 10^(EsNodB/10);
% modem constants ----------------------------------------------------------
Rs = 75; % symbol rate in Hz
Nc = 7; % number of carriers
Nd = 2; % diveristy factor
framesize = 56; % number of payload data bits in the frame
Nsw = 4; % frames we demod for initial sync window
afdmdv.Nsym = 6; % size of tx/tx root nyquist filter in symbols
afdmdv.Nt = 5; % number of symbols we estimate timing over
clip = 6.5; % Clipping of tx signal to reduce PAPR. Adjust by
% experiment as Nc and Nd change. Check out no noise
% scatter diagram and AWGN/fading BER perf
% at operating points
% FDMDV init ---------------------------------------------------------------
afdmdv.Fs = Fs;
afdmdv.Nc = Nd*Nc-1;
afdmdv.Rs = Rs;
if Fs/afdmdv.Rs != floor(Fs/afdmdv.Rs)
printf("\n Oops, Fs/Rs must be an integer!\n\n");
return
end
M = afdmdv.M = afdmdv.Fs/afdmdv.Rs;
afdmdv.Nfilter = afdmdv.Nsym*M;
afdmdv.tx_filter_memory = zeros(afdmdv.Nc+1, afdmdv.Nfilter);
excess_bw = 0.5;
afdmdv.gt_alpha5_root = gen_rn_coeffs(excess_bw, 1/Fs, Rs, afdmdv.Nsym, afdmdv.M);
Fcentre = afdmdv.Fcentre = 1500;
afdmdv.Fsep = afdmdv.Rs*(1+excess_bw);
afdmdv.phase_tx = ones(afdmdv.Nc+1,1);
% non linear carrier spacing, combined with clip, helps PAPR a lot!
freq_hz = afdmdv.Fsep*( -Nc*Nd/2 - 0.5 + (1:Nc*Nd).^0.98 );
afdmdv.freq_pol = 2*pi*freq_hz/Fs;
afdmdv.freq = exp(j*afdmdv.freq_pol);
afdmdv.Fcentre = 1500;
afdmdv.fbb_rect = exp(j*2*pi*Fcentre/Fs);
afdmdv.fbb_phase_tx = 1;
afdmdv.fbb_phase_rx = 1;
afdmdv.Nrxdec = 31;
afdmdv.rxdec_coeff = fir1(afdmdv.Nrxdec-1, 0.25)';
afdmdv.rxdec_lpf_mem = zeros(1,afdmdv.Nrxdec-1+afdmdv.M);
P = afdmdv.P = 4;
afdmdv.phase_rx = ones(afdmdv.Nc+1,1);
afdmdv.Nfilter = afdmdv.Nsym*afdmdv.M;
afdmdv.rx_fdm_mem = zeros(1,afdmdv.Nfilter + afdmdv.M);
Q = afdmdv.Q = afdmdv.M/4;
if Q != floor(Q)
printf("\n Yeah .... if (Fs/Rs)/4 = M/4 isn't an integer we will just go and break things.\n\n");
end
afdmdv.rx_filter_mem_timing = zeros(afdmdv.Nc+1, afdmdv.Nt*afdmdv.P);
afdmdv.Nfiltertiming = afdmdv.M + afdmdv.Nfilter + afdmdv.M;
afdmdv.rx_filter_memory = zeros(afdmdv.Nc+1, afdmdv.Nfilter);
afdmdv.filt = 0;
afdmdv.prev_rx_symb = ones(1,afdmdv.Nc+1);
% COHPSK Init --------------------------------------------------------
acohpsk = standard_init();
acohpsk.framesize = framesize;
acohpsk.ldpc_code = 0;
acohpsk.ldpc_code_rate = 1;
acohpsk.Nc = Nc;
acohpsk.Rs = Rs;
acohpsk.Ns = 4;
acohpsk.coh_en = 1;
acohpsk.Nd = Nd;
acohpsk.modulation = 'qpsk';
acohpsk.do_write_pilot_file = 1; % enable this to dump pilot symbols to C .h file, e.g. if frame params change
acohpsk = symbol_rate_init(acohpsk);
acohpsk.Ndft = 1024;
acohpsk.f_est = afdmdv.Fcentre;
ch_fdm_frame_buf = zeros(1, Nsw*acohpsk.Nsymbrowpilot*afdmdv.M);
% -----------------------------------------------------------
tx_bits_log = [];
tx_symb_log = [];
rx_amp_log = [];
rx_phi_log = [];
ch_symb_log = [];
rx_symb_log = [];
rx_bits_log = [];
tx_bits_prev_log = [];
uvnoise_log = [];
nerr_log = [];
tx_baseband_log = [];
tx_fdm_frame_log = [];
ch_fdm_frame_log = [];
rx_fdm_frame_bb_log = [];
rx_filt_log = [];
rx_fdm_filter_log = [];
rx_baseband_log = [];
rx_fdm_frame_log = [];
ct_symb_ff_log = [];
rx_timing_log = [];
ratio_log = [];
foff_log = [];
f_est_log = [];
sig_rms_log = [];
noise_rms_log = [];
noise_rms_filt_log = [];
% Channel modeling and BER measurement ----------------------------------------
rand('state',1);
tx_bits_coh = round(rand(1,framesize*10));
ptx_bits_coh = 1;
Nerrs = Tbits = 0;
prev_tx_bits = prev_tx_bits2 = [];
error_positions_hist = zeros(1,framesize);
phase_ch = 1;
sync = initial_sync;
acohpsk.f_est = Fcentre;
acohpsk.f_fine_est = 0;
acohpsk.ct = 4;
acohpsk.ftrack_en = ftrack_en;
if fading_en
[spread spread_2ms hf_gain] = init_hf_model(Fs, frames*acohpsk.Nsymbrowpilot*afdmdv.M);
hf_n = 1;
nhfdelay = floor(hf_delay_ms*Fs/1000);
ch_fdm_delay = zeros(1, acohpsk.Nsymbrowpilot*M + nhfdelay);
end
% simulated SSB tx filter
[b, a] = cheby1(4, 3, [600, 2600]/(Fs/2));
[y filt_states] = filter(b,a,0);
h = freqz(b,a,(600:2600)/(Fs/(2*pi)));
filt_gain = (2600-600)/sum(abs(h) .^ 2); % ensures power after filter == before filter
noise_rms_filt = 0;
% main loop --------------------------------------------------------------------
% run mod and channel as aseparate loop so we can resample to simulate sample rate differences
for f=1:frames
tx_bits = tx_bits_coh(ptx_bits_coh:ptx_bits_coh+framesize-1);
ptx_bits_coh += framesize;
if ptx_bits_coh > length(tx_bits_coh)
ptx_bits_coh = 1;
end
tx_bits_log = [tx_bits_log tx_bits];
[tx_symb tx_bits] = bits_to_qpsk_symbols(acohpsk, tx_bits, []);
tx_symb_log = [tx_symb_log; tx_symb];
tx_fdm_frame = [];
for r=1:acohpsk.Nsymbrowpilot
tx_onesymb = tx_symb(r,:);
[tx_baseband afdmdv] = tx_filter(afdmdv, tx_onesymb);
tx_baseband_log = [tx_baseband_log tx_baseband];
[tx_fdm afdmdv] = fdm_upconvert(afdmdv, tx_baseband);
tx_fdm_frame = [tx_fdm_frame tx_fdm];
end
% clipping, which along with non-linear carrier spacing, improves PAPR
% The value of clip is a function of Nc and is adjusted experimentally
% such that the BER hit over no clipping at Es/No=8dB is small.
ind = find(abs(tx_fdm_frame) > clip);
tx_fdm_frame(ind) = clip*exp(j*angle(tx_fdm_frame(ind)));
tx_fdm_frame_log = [tx_fdm_frame_log tx_fdm_frame];
%
% Channel --------------------------------------------------------------------
%
% simulate tx SSB filter with ripple
if ssb_tx_filt
[tx_fdm_frame filt_states] = filter(b,a,sqrt(filt_gain)*tx_fdm_frame, filt_states);
end
% frequency offset and frequency drift
ch_fdm_frame = zeros(1,acohpsk.Nsymbrowpilot*M);
for i=1:acohpsk.Nsymbrowpilot*M
foff_rect = exp(j*2*pi*foff/Fs);
foff += dfoff;
phase_ch *= foff_rect;
ch_fdm_frame(i) = tx_fdm_frame(i) * phase_ch;
end
foff_log = [foff_log foff];
phase_ch /= abs(phase_ch);
% optional fading
if fading_en
ch_fdm_delay(1:nhfdelay) = ch_fdm_delay(acohpsk.Nsymbrowpilot*M+1:nhfdelay+acohpsk.Nsymbrowpilot*M);
ch_fdm_delay(nhfdelay+1:nhfdelay+acohpsk.Nsymbrowpilot*M) = ch_fdm_frame;
for i=1:acohpsk.Nsymbrowpilot*M
ahf_model = hf_gain*(spread(hf_n)*ch_fdm_frame(i) + spread_2ms(hf_n)*ch_fdm_delay(i));
ch_fdm_frame(i) = ahf_model;
hf_n++;
end
end
% each carrier has power = 2, total power 2Nc, total symbol rate NcRs, noise BW B=Fs
% Es/No = (C/Rs)/(N/B), N = var = 2NcFs/NcRs(Es/No) = 2Fs/Rs(Es/No)
variance = 2*Fs/(acohpsk.Rs*EsNo);
uvnoise = sqrt(0.5)*(randn(1,acohpsk.Nsymbrowpilot*M) + j*randn(1,acohpsk.Nsymbrowpilot*M));
uvnoise_log = [uvnoise_log uvnoise];
noise = sqrt(variance)*uvnoise;
ch_fdm_frame += noise;
ch_fdm_frame_log = [ch_fdm_frame_log ch_fdm_frame];
end
% simulate difference in sample clocks
tin=1;
tout=1;
ch_fdm_frame_log_out = zeros(1,length(ch_fdm_frame_log));
while tin < length(ch_fdm_frame_log)
t1 = floor(tin);
t2 = ceil(tin);
f = tin - t1;
ch_fdm_frame_log_out(tout) = (1-f)*ch_fdm_frame_log(t1) + f*ch_fdm_frame_log(t2);
tout += 1;
tin += 1+sample_rate_ppm/1E6;
end
ch_fdm_frame_log = ch_fdm_frame_log_out(1:tout-1);
% Now run demod ----------------------------------------------------------------
ch_fdm_frame_log_index = 1;
nin = M;
f = 0;
nin_frame = acohpsk.Nsymbrowpilot*M;
%while (ch_fdm_frame_log_index + acohpsk.Nsymbrowpilot*M+M/P) < length(ch_fdm_frame_log)
for f=1:frames;
acohpsk.frame = f;
ch_fdm_frame = ch_fdm_frame_log(ch_fdm_frame_log_index:ch_fdm_frame_log_index + nin_frame - 1);
ch_fdm_frame_log_index += nin_frame;
%
% Demod ----------------------------------------------------------------------
%
% store two frames of received samples so we can rewind if we get a good candidate
ch_fdm_frame_buf(1:Nsw*acohpsk.Nsymbrowpilot*M-nin_frame) = ch_fdm_frame_buf(nin_frame+1:Nsw*acohpsk.Nsymbrowpilot*M);
ch_fdm_frame_buf(Nsw*acohpsk.Nsymbrowpilot*M-nin_frame+1:Nsw*acohpsk.Nsymbrowpilot*M) = ch_fdm_frame;
next_sync = sync;
% if out of sync do Initial Freq offset estimation over NSW frames to flush out memories
if (sync == 0)
% we can test +/- 20Hz, so we break this up into 3 tests to cover +/- 60Hz
max_ratio = 0;
for acohpsk.f_est = Fcentre-40:40:Fcentre+40
printf(" [%d] acohpsk.f_est: %f +/- 20\n", f, acohpsk.f_est);
% we are out of sync so reset f_est and process two frames to clean out memories
[ch_symb rx_timing rx_filt rx_baseband afdmdv acohpsk.f_est] = rate_Fs_rx_processing(afdmdv, ch_fdm_frame_buf, acohpsk.f_est, Nsw*acohpsk.Nsymbrowpilot, nin, 0);
rx_baseband_log = [rx_baseband_log rx_baseband];
rx_filt_log = [rx_filt_log rx_filt];
ch_symb_log = [ch_symb_log; ch_symb];
rx_timing_log = [rx_timing_log rx_timing];
for i=1:Nsw-1
acohpsk.ct_symb_buf = update_ct_symb_buf(acohpsk.ct_symb_buf, ch_symb((i-1)*acohpsk.Nsymbrowpilot+1:i*acohpsk.Nsymbrowpilot,:), acohpsk.Nct_sym_buf, acohpsk.Nsymbrowpilot);
end
[anext_sync acohpsk] = frame_sync_fine_freq_est(acohpsk, ch_symb((Nsw-1)*acohpsk.Nsymbrowpilot+1:Nsw*acohpsk.Nsymbrowpilot,:), sync, next_sync);
if anext_sync == 1
%printf(" [%d] acohpsk.ratio: %f\n", f, acohpsk.ratio);
if acohpsk.ratio > max_ratio
max_ratio = acohpsk.ratio;
f_est = acohpsk.f_est - acohpsk.f_fine_est;
next_sync = anext_sync;
end
end
end
if next_sync == 1
% we've found a sync candidate!
% re-process last two frames with adjusted f_est then check again
acohpsk.f_est = f_est;
printf(" [%d] trying sync and f_est: %f\n", f, acohpsk.f_est);
[ch_symb rx_timing rx_filt rx_baseband afdmdv f_est] = rate_Fs_rx_processing(afdmdv, ch_fdm_frame_buf, acohpsk.f_est, Nsw*acohpsk.Nsymbrowpilot, nin, 0);
rx_baseband_log = [rx_baseband_log rx_baseband];
rx_filt_log = [rx_filt_log rx_filt];
ch_symb_log = [ch_symb_log; ch_symb];
rx_timing_log = [rx_timing_log rx_timing];
for i=1:Nsw-1
acohpsk.ct_symb_buf = update_ct_symb_buf(acohpsk.ct_symb_buf, ch_symb((i-1)*acohpsk.Nsymbrowpilot+1:i*acohpsk.Nsymbrowpilot,:), acohpsk.Nct_sym_buf, acohpsk.Nsymbrowpilot);
end
[next_sync acohpsk] = frame_sync_fine_freq_est(acohpsk, ch_symb((Nsw-1)*acohpsk.Nsymbrowpilot+1:Nsw*acohpsk.Nsymbrowpilot,:), sync, next_sync);
if abs(acohpsk.f_fine_est) > 2
printf(" [%d] Hmm %f is a bit big so back to coarse est ...\n", f, acohpsk.f_fine_est);
next_sync = 0;
end
if acohpsk.ratio < 0.9
next_sync = 0;
end
if next_sync == 1
% OK we are in sync!
% demodulate first frame (demod completed below)
printf(" [%d] in sync! f_est: %f ratio: %f \n", f, f_est, acohpsk.ratio);
acohpsk.ct_symb_ff_buf(1:acohpsk.Nsymbrowpilot+2,:) = acohpsk.ct_symb_buf(acohpsk.ct+1:acohpsk.ct+acohpsk.Nsymbrowpilot+2,:);
end
end
end
% If in sync just do sample rate processing on latest frame
if sync == 1
[ch_symb rx_timing rx_filt rx_baseband afdmdv acohpsk.f_est] = rate_Fs_rx_processing(afdmdv, ch_fdm_frame, acohpsk.f_est, acohpsk.Nsymbrowpilot, nin, acohpsk.ftrack_en);
[next_sync acohpsk] = frame_sync_fine_freq_est(acohpsk, ch_symb, sync, next_sync);
acohpsk.ct_symb_ff_buf(1:2,:) = acohpsk.ct_symb_ff_buf(acohpsk.Nsymbrowpilot+1:acohpsk.Nsymbrowpilot+2,:);
acohpsk.ct_symb_ff_buf(3:acohpsk.Nsymbrowpilot+2,:) = acohpsk.ct_symb_buf(acohpsk.ct+3:acohpsk.ct+acohpsk.Nsymbrowpilot+2,:);
rx_baseband_log = [rx_baseband_log rx_baseband];
rx_filt_log = [rx_filt_log rx_filt];
ch_symb_log = [ch_symb_log; ch_symb];
rx_timing_log = [rx_timing_log rx_timing];
f_est_log = [f_est_log acohpsk.f_est];
end
% if we are in sync complete demodulation with symbol rate processing
if (next_sync == 1) || (sync == 1)
[rx_symb rx_bits rx_symb_linear amp_ phi_ sig_rms noise_rms] = qpsk_symbols_to_bits(acohpsk, acohpsk.ct_symb_ff_buf);
rx_symb_log = [rx_symb_log; rx_symb];
rx_amp_log = [rx_amp_log; amp_];
rx_phi_log = [rx_phi_log; phi_];
rx_bits_log = [rx_bits_log rx_bits];
tx_bits_prev_log = [tx_bits_prev_log prev_tx_bits2];
ratio_log = [ratio_log acohpsk.ratio];
ct_symb_ff_log = [ct_symb_ff_log; acohpsk.ct_symb_ff_buf(1:acohpsk.Nsymbrowpilot,:)];
sig_rms_log = [sig_rms_log sig_rms];
noise_rms_log = [noise_rms_log noise_rms];
noise_rms_filt = 0.9*noise_rms_filt + 0.1*noise_rms;
noise_rms_filt_log = [noise_rms_filt_log noise_rms_filt];
% BER stats
if f > 2
error_positions = xor(tx_bits_log((f-3)*framesize+1:(f-2)*framesize), rx_bits);
Nerrs += sum(error_positions);
nerr_log = [nerr_log sum(error_positions)];
Tbits += length(error_positions);
error_positions_hist += error_positions;
end
printf("\r [%d]", f);
end
% reset BER stats if we lose sync
if sync == 1
%Nerrs = 0;
%Tbits = 0;
%nerr_log = [];
end
[sync acohpsk] = sync_state_machine(acohpsk, sync, next_sync);
% work out how many samples we need for next time
nin = M;
if sync == 1
if rx_timing(length(rx_timing)) > M/P
nin = M + M/P;
end
if rx_timing(length(rx_timing)) < -M/P
nin = M - M/P;
end
end
nin_frame = (acohpsk.Nsymbrowpilot-1)*M + nin;
prev_tx_bits2 = prev_tx_bits;
prev_tx_bits = tx_bits;
end
ber = Nerrs/Tbits;
printf("\nOctave EsNodB: %4.1f ber..: %4.3f Nerrs..: %d Tbits..: %d\n", EsNodB, ber, Nerrs, Tbits);
if compare_with_c
% Output vectors from C port ---------------------------------------------------
load tcohpsk_out.txt
% Determine bit error rate
sz = length(rx_bits_log_c);
Nerrs_c = sum(xor(tx_bits_log(1:sz-framesize), rx_bits_log_c(framesize+1:sz)));
Tbits_c = length(tx_bits_prev_log);
ber_c = Nerrs_c/Tbits_c;
printf("C EsNodB.....: %4.1f ber_c: %4.3f Nerrs_c: %d Tbits_c: %d\n", EsNodB, ber_c, Nerrs_c, Tbits_c);
stem_sig_and_error(1, 111, tx_bits_log_c, tx_bits_log - tx_bits_log_c, 'tx bits', [1 length(tx_bits_log) -1.5 1.5])
stem_sig_and_error(2, 211, real(tx_symb_log_c), real(tx_symb_log - tx_symb_log_c), 'tx symb re', [1 length(tx_symb_log_c) -1.5 1.5])
stem_sig_and_error(2, 212, imag(tx_symb_log_c), imag(tx_symb_log - tx_symb_log_c), 'tx symb im', [1 length(tx_symb_log_c) -1.5 1.5])
stem_sig_and_error(3, 211, real(tx_fdm_frame_log_c), real(tx_fdm_frame_log - tx_fdm_frame_log_c), 'tx fdm frame re', [1 length(tx_fdm_frame_log) -10 10])
stem_sig_and_error(3, 212, imag(tx_fdm_frame_log_c), imag(tx_fdm_frame_log - tx_fdm_frame_log_c), 'tx fdm frame im', [1 length(tx_fdm_frame_log) -10 10])
stem_sig_and_error(4, 211, real(ch_fdm_frame_log_c), real(ch_fdm_frame_log - ch_fdm_frame_log_c), 'ch fdm frame re', [1 length(ch_fdm_frame_log) -10 10])
stem_sig_and_error(4, 212, imag(ch_fdm_frame_log_c), imag(ch_fdm_frame_log - ch_fdm_frame_log_c), 'ch fdm frame im', [1 length(ch_fdm_frame_log) -10 10])
c = 1;
stem_sig_and_error(5, 211, real(rx_baseband_log_c(c,:)), real(rx_baseband_log(c,:) - rx_baseband_log_c(c,:)), 'rx baseband re', [1 length(rx_baseband_log) -10 10])
stem_sig_and_error(5, 212, imag(rx_baseband_log_c(c,:)), imag(rx_baseband_log(c,:) - rx_baseband_log_c(c,:)), 'rx baseband im', [1 length(rx_baseband_log) -10 10])
stem_sig_and_error(6, 211, real(rx_filt_log_c(c,:)), real(rx_filt_log(c,:) - rx_filt_log_c(c,:)), 'rx filt re', [1 length(rx_filt_log) -1 1])
stem_sig_and_error(6, 212, imag(rx_filt_log_c(c,:)), imag(rx_filt_log(c,:) - rx_filt_log_c(c,:)), 'rx filt im', [1 length(rx_filt_log) -1 1])
[n m] = size(ch_symb_log);
stem_sig_and_error(7, 211, real(ch_symb_log_c), real(ch_symb_log - ch_symb_log_c), 'ch symb re', [1 n -1.5 1.5])
stem_sig_and_error(7, 212, imag(ch_symb_log_c), imag(ch_symb_log - ch_symb_log_c), 'ch symb im', [1 n -1.5 1.5])
[n m] = size(rx_symb_log);
stem_sig_and_error(8, 211, rx_amp_log_c, rx_amp_log - rx_amp_log_c, 'Amp Est', [1 n -1.5 1.5])
phi_log_diff = rx_phi_log - rx_phi_log_c;
phi_log_diff(find(phi_log_diff > pi)) -= 2*pi;
phi_log_diff(find(phi_log_diff < -pi)) += 2*pi;
stem_sig_and_error(8, 212, rx_phi_log_c, phi_log_diff, 'Phase Est', [1 n -4 4])
stem_sig_and_error(9, 211, real(rx_symb_log_c), real(rx_symb_log - rx_symb_log_c), 'rx symb re', [1 n -1.5 1.5])
stem_sig_and_error(9, 212, imag(rx_symb_log_c), imag(rx_symb_log - rx_symb_log_c), 'rx symb im', [1 n -1.5 1.5])
stem_sig_and_error(10, 111, rx_bits_log_c, rx_bits_log - rx_bits_log_c, 'rx bits', [1 length(rx_bits_log) -1.5 1.5])
stem_sig_and_error(11, 111, f_est_log_c - Fcentre - foff, f_est_log - f_est_log_c, 'f est', [1 length(f_est_log) -5 5])
stem_sig_and_error(12, 111, rx_timing_log_c, rx_timing_log_c - rx_timing_log, 'rx timing', [1 length(rx_timing_log) -M M])
check(tx_bits_log, tx_bits_log_c, 'tx_bits');
check(tx_symb_log, tx_symb_log_c, 'tx_symb');
check(tx_fdm_frame_log, tx_fdm_frame_log_c, 'tx_fdm_frame',0.01);
check(ch_fdm_frame_log, ch_fdm_frame_log_c, 'ch_fdm_frame',0.01);
check(ch_symb_log, ch_symb_log_c, 'ch_symb',0.05);
check(rx_amp_log, rx_amp_log_c, 'rx_amp_log',0.01);
check(phi_log_diff, zeros(length(phi_log_diff), Nc*Nd), 'rx_phi_log',0.1);
check(rx_symb_log, rx_symb_log_c, 'rx_symb',0.01);
check(rx_timing_log, rx_timing_log_c, 'rx_timing',0.005);
check(rx_bits_log, rx_bits_log_c, 'rx_bits');
check(f_est_log, f_est_log_c, 'f_est');
check(sig_rms_log, sig_rms_log_c, 'sig_rms');
check(noise_rms_log, noise_rms_log_c, 'noise_rms');
printf("\npasses: %d fails: %d\n", passes, fails);
else
papr = max(tx_fdm_frame_log.*conj(tx_fdm_frame_log)) / mean(tx_fdm_frame_log.*conj(tx_fdm_frame_log));
papr_dB = 10*log10(papr);
printf("av tx pwr: %4.2f PAPR: %4.2f av rx pwr: %4.2f\n", var(tx_fdm_frame_log), papr_dB, var(ch_fdm_frame_log));
% some other useful plots
f = figure(1)
clf
subplot(211)
plot(real(tx_fdm_frame_log))
title('tx fdm real');
subplot(212)
plot(imag(tx_fdm_frame_log))
title('tx fdm imag');
f = figure(2)
clf
spec = 20*log10(abs(fft(tx_fdm_frame_log)));
l = length(spec);
plot((Fs/l)*(1:l), spec)
axis([1 Fs/2 0 max(spec)]);
title('tx spectrum');
ylabel('Amplitude (dB)')
xlabel('Frequency (Hz)')
grid;
f = figure(3)
clf;
% plot combined signals to show diversity gains
combined = rx_symb_log(:,1:Nc);
for d=2:Nd
combined += rx_symb_log(:, (d-1)*Nc+1:d*Nc);
end
plot(combined*exp(j*pi/4)/sqrt(Nd),'+')
title('Scatter');
ymax = abs(max(max(combined)));
axis([-ymax ymax -ymax ymax])
f = figure(4)
clf;
subplot(211)
plot(rx_phi_log)
subplot(212)
plot(rx_amp_log)
f = figure(5)
clf;
subplot(211)
plot(rx_timing_log)
title('rx timing');
subplot(212)
stem(ratio_log)
title('Sync ratio');
f = figure(6)
clf;
subplot(211)
stem(nerr_log)
title('Bit Errors');
subplot(212)
plot(noise_rms_filt_log,'r', sig_rms_log,'g');
title('Est rms signal and noise')
f = figure(7);
clf;
subplot(211)
plot(foff_log,';freq offset;');
hold on;
plot(f_est_log - Fcentre,'g;freq offset est;');
hold off;
title('freq offset');
legend("boxoff");
subplot(212)
plot(foff_log(1:length(f_est_log)) - f_est_log + Fcentre)
title('freq offset estimation error');
f = figure(8)
clf
h = freqz(b,a,Fs/2);
plot(20*log10(abs(h)))
axis([1 Fs/2 -20 0])
grid
title('SSB tx filter')
f = figure(9)
clf
plot(error_positions_hist)
title('histogram of bit errors')
end
% function to write C header file of noise samples so C version gives
% exactly the same results
function write_noise_file(uvnoise_log)
m = length(uvnoise_log);
filename = sprintf("../unittest/noise_samples.h");
f=fopen(filename,"wt");
fprintf(f,"/* unit variance complex noise samples */\n\n");
fprintf(f,"/* Generated by write_noise_file() Octave function */\n\n");
fprintf(f,"COMP noise[]={\n");
for r=1:m
if r < m
fprintf(f, " {%f,%f},\n", real(uvnoise_log(r)), imag(uvnoise_log(r)));
else
fprintf(f, " {%f,%f}\n};", real(uvnoise_log(r)), imag(uvnoise_log(r)));
end
end
fclose(f);
endfunction
% function to write float fading samples for use by C programs
%function write_noise_file(raw_file_name, Fs, dopplerSpreadHz, len_samples)
% spread = doppler_spread(dopplerSpreadHz, Fs, len_samples);
% spread_2ms = doppler_spread(dopplerSpreadHz, Fs, len_samples);
% hf_gain = 1.0/sqrt(var(spread)+var(spread_2ms));
%
% % interleave real imag samples
%
% inter = zeros(1,len_samples*4);
% inter(1:4) = hf_gain;
% for i=1:len_samples
% inter(i*4+1) = real(spread(i));
% inter(i*4+2) = imag(spread(i));
% inter(i*4+3) = real(spread_2ms(i));
% inter(i*4+4) = imag(spread_2ms(i));
% end
% f = fopen(raw_file_name,"wb");
% fwrite(f, inter, "float32");
% fclose(f);
%endfunction
|