1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
% test_dqpsk2.m
% David Rowe April 2014
%
% DQPSK modem simulation inclduing filtering to test modulating modem
% tx power based on speech energy. Unlike test_dpsk runs at sample
% rate Fs.
1;
% main test function
function sim_out = ber_test(sim_in)
Fs = 8000;
verbose = sim_in.verbose;
framesize = sim_in.framesize;
Ntrials = sim_in.Ntrials;
Esvec = sim_in.Esvec;
phase_offset = sim_in.phase_offset;
w_offset = sim_in.w_offset;
plot_scatter = sim_in.plot_scatter;
Rs = sim_in.Rs;
hf_sim = sim_in.hf_sim;
Nhfdelay = floor(sim_in.hf_delay_ms*Fs/1000);
Nc = sim_in.Nc;
symbol_amp = sim_in.symbol_amp;
bps = 2;
Nsymb = framesize/bps;
for k=1:Nc
prev_sym_tx(k) = qpsk_mod([0 0]);
prev_sym_rx(k) = qpsk_mod([0 0]);
end
% design root nyquist (root raised cosine) filter and init tx and rx filter states
alpha = 0.5; T=1/Fs; Nfiltsym=7; M=Fs/Rs;
if floor(Fs/Rs) != Fs/Rs
printf("oversampling ratio must be an integer\n");
return;
end
hrn = gen_rn_coeffs(alpha, T, Rs, Nfiltsym, M);
Nfilter = length(hrn);
% convert "spreading" samples from 1kHz carrier at Fs to complex
% baseband, generated by passing a 1kHz sine wave through PathSim
% with the ccir-poor model, enabling one path at a time.
Fc = 1000;
fspread = fopen("../raw/sine1k_2Hz_spread.raw","rb");
spread1k = fread(fspread, "int16")/10000;
fclose(fspread);
fspread = fopen("../raw/sine1k_2ms_delay_2Hz_spread.raw","rb");
spread1k_2ms = fread(fspread, "int16")/10000;
fclose(fspread);
% down convert to complex baseband
spreadbb = spread1k.*exp(-j*(2*pi*Fc/Fs)*(1:length(spread1k))');
spreadbb_2ms = spread1k_2ms.*exp(-j*(2*pi*Fc/Fs)*(1:length(spread1k_2ms))');
% remove -2000 Hz image
b = fir1(50, 5/Fs);
spread = filter(b,1,spreadbb);
spread_2ms = filter(b,1,spreadbb_2ms);
% discard first 1000 samples as these were near 0, probably as
% PathSim states were ramping up. Transpose for convenience
spread = transpose(spread(1000:length(spread)));
spread_2ms = transpose(spread_2ms(1000:length(spread_2ms)));
% Determine "gain" of HF channel model, so we can normalise
% carrier power during HF channel sim to calibrate SNR. I imagine
% different implementations of ccir-poor would do this in
% different ways, leading to different BER results. Oh Well!
hf_gain = 1.0/sqrt(var(spread)+var(spread_2ms));
% Start Simulation ----------------------------------------------------------------
for ne = 1:length(Esvec)
EsNodB = Esvec(ne);
EsNo = 10^(EsNodB/10);
variance = Fs/(Rs*EsNo);
if verbose > 1
printf("EsNo (dB): %f EsNo: %f variance: %f\n", EsNodB, EsNo, variance);
end
Terrs = 0; Tbits = 0;
tx_symb_log = [];
rx_symb_log = [];
noise_log = [];
sim_out.errors_log = [];
sim_out.tx_baseband_log = [];
sim_out.rx_filt_log = [];
symbol_amp_index = 1;
% init filter memories and LOs
tx_filter_memory = zeros(Nc, Nfilter);
rx_filter_memory = zeros(Nc, Nfilter);
s_delay_line_filt = zeros(Nc, Nfiltsym);
phase_tx = ones(1,Nc);
phase_rx = ones(1,Nc);
Fcentre = 1500; Fsep = (1+alpha)*Rs;
freq = Fcentre + Fsep*((-Nc/2+0.5):(Nc/2-0.5));
freq = exp(j*freq*2*pi/Fs);
% init HF channel
sc = 1; hf_n = 1;
hf_sim_delay_line = zeros(1,M+Nhfdelay);
freq_sample_hz = Fcentre + ((Fsep*(-Nc/2)):50:(Fsep*(Nc/2)));
freq_sample_rads = (2*pi/Fs)*freq_sample_hz;
hf_model = ones(Ntrials*Nsymb/Nc, length(freq_sample_rads)); % defaults for plotting surface
% bunch of outputs we log for graphing
sim_out.errors_log = [];
sim_out.Nerrs = [];
sim_out.snr_log = [];
sim_out.hf_model_pwr = [];
sim_out.tx_fdm_log = [];
C_log = [];
for nn = 1: Ntrials
tx_bits = round( rand( 1, framesize ) );
% modulate --------------------------------------------
s = zeros(1, Nsymb);
for i=1:Nc:Nsymb
for k=1:Nc
tx_symb = qpsk_mod(tx_bits(2*(i-1+k-1)+1:2*(i+k-1)));
s_qpsk(i+k-1) = tx_symb;
tx_symb *= prev_sym_tx(k);
prev_sym_tx(k) = tx_symb;
s(i+k-1) = symbol_amp(symbol_amp_index)*tx_symb;
end
end
symbol_amp_index++;
s_ch = s;
% Now we start processing frame Nc symbols at a time to model parallel carriers
tx_fdm_sym_log = [];
for i=1:Nc:Nsymb
% Delay tx symbols to match delay due to filters. qpsk
% (rather than dqpsk) symbols used for convenience as
% it's easy to shift symbols than pairs of bits
s_delay_line_filt(:,1:Nfiltsym-1) = s_delay_line_filt(:,2:Nfiltsym);
s_delay_line_filt(:,Nfiltsym) = s_qpsk(i:i+Nc-1);
s_qpsk(i:i+Nc-1) = s_delay_line_filt(:,1);
for k=1:Nc
tx_bits(2*(i-1+k-1)+1:2*(i+k-1)) = qpsk_demod(s_qpsk(i+k-1));
end
% tx filter
tx_baseband = zeros(Nc,M);
% tx filter each symbol, generate M filtered output samples for each symbol.
% Efficient polyphase filter techniques used as tx_filter_memory is sparse
tx_filter_memory(:,Nfilter) = s(i:i+Nc-1);
for k=1:M
tx_baseband(:,k) = M*tx_filter_memory(:,M:M:Nfilter) * hrn(M-k+1:M:Nfilter)';
end
tx_filter_memory(:,1:Nfilter-M) = tx_filter_memory(:,M+1:Nfilter);
tx_filter_memory(:,Nfilter-M+1:Nfilter) = zeros(Nc,M);
sim_out.tx_baseband_log = [sim_out.tx_baseband_log tx_baseband];
% upconvert
tx_fdm = zeros(1,M);
for c=1:Nc
for k=1:M
phase_tx(c) = phase_tx(c) * freq(c);
tx_fdm(k) = tx_fdm(k) + tx_baseband(c,k)*phase_tx(c);
end
end
sim_out.tx_fdm_log = [sim_out.tx_fdm_log tx_fdm];
% HF channel
if hf_sim
hf_sim_delay_line(1:Nhfdelay) = hf_sim_delay_line(M+1:M+Nhfdelay);
hf_sim_delay_line(Nhfdelay+1:M+Nhfdelay) = tx_fdm;
tx_fdm = tx_fdm.*spread(sc:sc+M-1) + hf_sim_delay_line(1:M).*spread_2ms(sc:sc+M-1);
tx_fdm *= hf_gain;
% sample HF channel spectrum in middle of this symbol for plotting
hf_model(hf_n,:) = hf_gain*(spread(sc+M/2) + exp(-j*freq_sample_rads*Nhfdelay)*spread_2ms(sc+M/2));
sc += M;
hf_n++;
end
tx_fdm_sym_log = [tx_fdm_sym_log tx_fdm ];
% AWGN noise and phase/freq offset channel simulation
% 0.5 factor ensures var(noise) == variance , i.e. splits power between Re & Im
noise = sqrt(variance*0.5)*(randn(1,M) + j*randn(1,M));
noise_log = [noise_log noise];
% apply frequency and phase offset and noise
for k=1:M
rx_fdm(k) = tx_fdm(k)*exp(j*phase_offset) + noise(k);
phase_offset += w_offset;
end
% downconvert
rx_baseband = zeros(Nc,M);
for c=1:Nc
for k=1:M
phase_rx(c) = phase_rx(c) * freq(c);
rx_baseband(c,k) = rx_fdm(k)*phase_rx(c)';
end
end
% rx filter
rx_filter_memory(:,Nfilter-M+1:Nfilter) = rx_baseband;
rx_filt = rx_filter_memory * hrn';
rx_filter_memory(:,1:Nfilter-M) = rx_filter_memory(:,1+M:Nfilter);
sim_out.rx_filt_log = [sim_out.rx_filt_log rx_filt];
s_ch(i:i+Nc-1) = rx_filt;
end
% est HF model power for entire code frame (which could be several symbols)
if hf_sim
frame_hf_model = reshape(hf_model(hf_n-Nsymb/Nc:hf_n-1,:),1,(Nsymb/Nc)*length(freq_sample_hz));
sim_out.hf_model_pwr = [sim_out.hf_model_pwr mean(abs(frame_hf_model).^2)];
else
sim_out.hf_model_pwr = [sim_out.hf_model_pwr 1];
end
% "genie" SNR estimate
snr = (tx_fdm_sym_log*tx_fdm_sym_log')/(M*variance);
sim_out.snr_log = [sim_out.snr_log snr];
% de-modulate
rx_bits = zeros(1, framesize);
for i=1:Nc:Nsymb
for k=1:Nc
rx_symb = s_ch(i+k-1);
tmp = rx_symb;
rx_symb *= conj(prev_sym_rx(k)/abs(prev_sym_rx(k)));
prev_sym_rx(k) = tmp;
rx_bits((2*(i-1+k-1)+1):(2*(i+k-1))) = qpsk_demod(rx_symb);
rx_symb_log = [rx_symb_log rx_symb];
end
end
% ignore data until we have enough frames to fill filter memory
% then count errors
if nn > ceil(Nfiltsym/(Nsymb/Nc))
error_positions = xor(rx_bits, tx_bits);
sim_out.errors_log = [sim_out.errors_log error_positions];
Nerrs = sum(error_positions);
sim_out.Nerrs = [sim_out.Nerrs Nerrs];
Terrs += Nerrs;
Tbits += length(tx_bits);
end
end
TERvec(ne) = Terrs;
BERvec(ne) = Terrs/Tbits;
if verbose
printf("EsNo (dB): %f Terrs: %d BER %f ", EsNodB, Terrs, Terrs/Tbits);
printf("\n");
end
if verbose > 1
printf("Terrs: %d BER %f C %f N %f Es %f No %f Es/No %f\n\n", Terrs,
Terrs/Tbits, var(sim_out.tx_fdm_log), var(noise_log),
var(sim_out.tx_fdm_log)/(Nc*Rs), var(noise_log)/Fs, (var(sim_out.tx_fdm_log)/(Nc*Rs))/(var(noise_log)/Fs));
end
end
Ebvec = Esvec - 10*log10(bps);
sim_out.BERvec = BERvec;
sim_out.Ebvec = Ebvec;
sim_out.TERvec = TERvec;
if plot_scatter
figure(2);
clf;
scat = rx_symb_log(Nfiltsym*Nc:length(rx_symb_log)) .* exp(j*pi/4);
plot(real(scat), imag(scat),'+');
title('Scatter plot');
figure(3);
clf;
y = 1:Rs*2;
EsNodBSurface = 20*log10(abs(hf_model(y,:))) + EsNodB;
mesh(1:length(freq_sample_hz),y,EsNodBSurface);
grid
title('HF Channel Es/No');
end
endfunction
% Gray coded QPSK modulation function
function symbol = qpsk_mod(two_bits)
two_bits_decimal = sum(two_bits .* [2 1]);
switch(two_bits_decimal)
case (0) symbol = 1;
case (1) symbol = j;
case (2) symbol = -j;
case (3) symbol = -1;
endswitch
endfunction
% Gray coded QPSK demodulation function
function two_bits = qpsk_demod(symbol)
if isscalar(symbol) == 0
printf("only works with scalars\n");
return;
end
bit0 = real(symbol*exp(j*pi/4)) < 0;
bit1 = imag(symbol*exp(j*pi/4)) < 0;
two_bits = [bit1 bit0];
endfunction
function sim_in = standard_init
sim_in.verbose = 1;
sim_in.plot_scatter = 0;
sim_in.Esvec = 5:15;
sim_in.Ntrials = 100;
sim_in.framesize = 64;
sim_in.Rs = 100;
sim_in.Nc = 8;
sim_in.phase_offset = 0;
sim_in.w_offset = 0;
sim_in.phase_noise_amp = 0;
sim_in.hf_delay_ms = 2;
sim_in.hf_sim = 0;
sim_in.hf_phase_only = 0;
sim_in.hf_mag_only = 0;
endfunction
function awgn_hf_ber_curves()
sim_in = standard_init();
Ebvec = sim_in.Esvec - 10*log10(2);
BER_theory = 0.5*erfc(sqrt(10.^(Ebvec/10)));
dpsk_awgn = ber_test(sim_in);
sim_in.hf_sim = 1;
dpsk_hf = ber_test(sim_in);
figure(1);
clf;
semilogy(Ebvec, BER_theory,'r;QPSK theory;')
hold on;
semilogy(dpsk_awgn.Ebvec, dpsk_awgn.BERvec,'g;DQPSK;')
semilogy(dpsk_hf.Ebvec, dpsk_hf.BERvec,'g;DQPSK HF;')
hold off;
xlabel('Eb/N0')
ylabel('BER')
grid("minor")
axis([min(Ebvec) max(Ebvec) 1E-3 1])
end
sim_in = standard_init();
% energy file sampled every 10ms
load ../src/ve9qrp.txt
pdB=10*log10(ve9qrp);
for i=1:length(pdB)
if pdB(i) < 0
pdB(i) = 0;
end
end
% Down sample to 40ms rate used for 1300 bit/s codec, every 4th sample is transmitted
pdB = pdB(4:4:length(pdB));
% Use linear mapping function in dB domain to map to symbol power
%power_map_x = [ 0 20 24 40 50 ];
%power_map_y = [--6 -6 0 6 6];
power_map_x = [ 0 50 ];
power_map_y = [ -15 12];
mapped_pdB = interp1(power_map_x, power_map_y, pdB);
sim_in.symbol_amp = 10 .^ (mapped_pdB/20);
%sim_in.symbol_amp = ones(1,length(pdB));
sim_in.plot_scatter = 1;
sim_in.verbose = 2;
sim_in.hf_delay_ms = 2;
sim_in.hf_sim = 1;
sim_in.Esvec = 10;
sim_in.Ntrials = 400;
dqpsk_pwr_hf = ber_test(sim_in);
% note: need way to test that power is aligned with speech
figure(4)
clf;
plot((1:sim_in.Ntrials)*80*4, pdB(1:sim_in.Ntrials));
hold on;
plot((1:sim_in.Ntrials)*80*4, mapped_pdB(1:sim_in.Ntrials),'r');
hold off;
figure(5)
clf;
s = load_raw("../raw/ve9qrp.raw");
M=320; M_on_2 = M/2; % processing delay between input speech and centre of analysis window
subplot(211)
plot(M_on_2:(M_on_2-1+sim_in.Ntrials*M),s(1:sim_in.Ntrials*M))
hold on;
plot((1:sim_in.Ntrials)*M, 5000*sim_in.symbol_amp(1:sim_in.Ntrials),'r');
hold off;
axis([1 sim_in.Ntrials*M -3E4 3E4]);
subplot(212)
plot(real(dqpsk_pwr_hf.tx_fdm_log));
figure(6)
clf;
plot((1:sim_in.Ntrials)*M, 20*log10(sim_in.symbol_amp(1:sim_in.Ntrials)),'b;Es (dB);');
hold on;
plot((1:sim_in.Ntrials)*M, 10*log10(dqpsk_pwr_hf.hf_model_pwr),'g;Fading (dB);');
plot((1:sim_in.Ntrials)*M, 10*log10(dqpsk_pwr_hf.snr_log),'r;Es/No (dB);');
ber = dqpsk_pwr_hf.Nerrs/sim_in.framesize;
ber_clip = ber;
ber_clip(find(ber > 0.2)) = 0.2;
plot((1:length(ber_clip))*M, -20+100*ber_clip,'k;BER (0-20%);');
hold off;
axis([1 sim_in.Ntrials*M -20 20])
fep=fopen("dqpsk_errors_pwr.bin","wb"); fwrite(fep, dqpsk_pwr_hf.errors_log, "short"); fclose(fep);
fber=fopen("ber.bin","wb"); fwrite(fber, ber, "float"); fclose(fber);
|