aboutsummaryrefslogtreecommitdiff
path: root/src/ch.c
blob: 57411bd9b122e0e06d5c393d86bb35d828b50dba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*---------------------------------------------------------------------------*\

  FILE........: ch.c
  AUTHOR......: David Rowe
  DATE CREATED: May 2015

  Channel simulation program for testing command line versions of modems.

\*---------------------------------------------------------------------------*/

/*
  Copyright (C) 2015-2022 David Rowe

  All rights reserved.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU Lesser General Public License version 2.1, as
  published by the Free Software Foundation.  This program is
  distributed in the hope that it will be useful, but WITHOUT ANY
  WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
  License for more details.

  You should have received a copy of the GNU Lesser General Public License
  along with this program; if not, see <http://www.gnu.org/licenses/>.
*/

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <getopt.h>

#include "freedv_api.h"
#include "codec2_cohpsk.h"
#include "comp_prim.h"
#include "ht_coeff.h"
#include "ssbfilt_coeff.h"

#include "debug_alloc.h"

#define BUF_N            160
#define MPG_DELAY_MS     0.5
#define MPP_DELAY_MS     2.0
#define MPD_DELAY_MS     4.0

/* see instructions below for how to generate these files */

#define DEFAULT_FADING_DIR    "unittest"
#define MPG_FADING_FILE_NAME  "slow_fading_samples.float"
#define MPP_FADING_FILE_NAME  "fast_fading_samples.float"
#define MPD_FADING_FILE_NAME  "faster_fading_samples.float"

// Gaussian from uniform:
float gaussian(void) {
    double x = (double)rand() / RAND_MAX;
    double y = (double)rand() / RAND_MAX;
    double z = sqrt(-2 * log(x)) * cos(2 * M_PI * y);
    return sqrt(1./2.) * z;
}

// complex noise sample
COMP noise(void) {
    COMP n = {gaussian(),gaussian()};
    return n;
}

int main(int argc, char *argv[])
{
    FILE          *fin, *ffading, *fout;
    char	        *fading_dir;
    float          NodB, foff_hz;
    int            fading_en, nhfdelay;

    short          buf[BUF_N];
    float          htbuf[HT_N+BUF_N];
    COMP           ch_in[BUF_N];
    COMP           ch_fdm[BUF_N];
    COMP           ssbfiltbuf[SSBFILT_N+BUF_N];
    COMP           ssbfiltout[BUF_N];

    COMP           phase_ch;
    float          No, variance;
    COMP           scaled_noise;
    float          hf_gain;
    COMP          *ch_fdm_delay = NULL, aspread, aspread_2ms, delayed, direct;
    float          tx_pwr, tx_pwr_fade, noise_pwr, user_multipath_delay;
    int            frames, i, j, k, Fs, ret, nclipped, noutclipped, ssbfilt_en, complex_out, ctest;
    float          sam, peak, clip, papr, CNo, snr3k, gain;

    if (argc < 3) {
    helpmsg:
        fprintf(stderr, "Command line channel simulation tool.\n"
                        "\n"
                        "usage: %s InputRealModemRawFile OutputRealModemRawFile [Options]\n"
                        "\n"
                        "  real int16 input -> Gain -> Hilbert Transform -> clipper -> freq shift ->\n"
                        "  Multipath -> AWGN noise -> SSB filter -> real int16 output\n"
                        "\n"
                        "[--clip int16]         Hilbert clipper (clip complex signal magnitude, default 32767)\n"
                        "[--complexout]         Optional int16 IQ complex output (default real int16)\n"
                        "[--ctest]              Check PAPR is around 0dB, used to support ctests\n"
                        "[--freq FoffHz]        Frequency offset (default 0Hz)\n"
                        "[--fading_dir Path]    path to multipath fading files (default 'unittest')\n"
                        "[--Fs SampleRateHz]    Sample rate of simulation (default 8000 Hz)\n"
                        "[--gain G]             Linear gain (default 1.0)\n"
                        "[--mpg]                Multipath good 0.1Hz Doppler, 0.5ms delay\n"
                        "[--mpp]                Multipath poor 1.0Hz Doppler, 2.0ms delay\n"
                        "[--mpd]                Multipath disturbed 2.0Hz Doppler, 4.0ms delay\n"
                        "[--ssbfilt 0|1]        SSB bandwidth filter (default 1 on)\n"
                        "[--mulipath_delay ms]  Optionally adjust multipath delay\n"
                        "[--No dBHz]            AWGN Noise density dB/Hz (default -100)"
                        "\n"
                , argv[0]);
        exit(1);
    }

    if (strcmp(argv[1], "-")  == 0) fin = stdin;
    else if ( (fin = fopen(argv[1],"rb")) == NULL ) {
        fprintf(stderr, "ch: Error opening input modem raw file: %s: %s.\n",
                argv[1], strerror(errno));
        exit(1);
    }

    if (strcmp(argv[2], "-") == 0) fout = stdout;
    else if ( (fout = fopen(argv[2],"wb")) == NULL ) {
        fprintf(stderr, "ch: Error opening output modem raw file: %s: %s.\n",
                argv[2], strerror(errno));
        exit(1);
    }

    NodB = -100;
    Fs = 8000; foff_hz = 0.0; fading_en = 0; ctest = 0;
    clip =32767; gain = 1.0;
    ssbfilt_en = 1; complex_out = 0;
    fading_dir = strdup(DEFAULT_FADING_DIR); user_multipath_delay = -1.0;

    int o = 0;
    int opt_idx = 0;
    while( o != -1 ){
        static struct option long_opts[] = {
            {"complexout",      no_argument,        0, 'o'},
            {"ctest",           no_argument,        0, 't'},
            {"clip",            required_argument,  0, 'c'},
            {"fading_dir",      required_argument,  0, 'u'},
            {"freq",            required_argument,  0, 'f'},
            {"Fs",              required_argument,  0, 'r'},
            {"gain",            required_argument,  0, 'g'},
            {"ssbfilt",         required_argument,  0, 's'},
            {"help",            no_argument,        0, 'h'},
            {"mpg",             no_argument,        0, 'i'},
            {"mpp",             no_argument,        0, 'p'},
            {"mpd",             no_argument,        0, 'd'},
            {"multipath_delay", required_argument,  0, 'm'},
            {"No",              required_argument,  0, 'n'},
            {0, 0, 0, 0}
        };

        o = getopt_long(argc,argv,"c:df:g:im:n:opr:s:tu:h",long_opts,&opt_idx);
        
        switch(o) {
        case 'c':
            clip = atof(optarg);
            break;
        case 'd':
            fading_en = 3;
            break;
        case 'f':
            foff_hz = atof(optarg);
            break;
        case 'g':
            gain = atof(optarg);
            break;
        case 'i':
            fading_en = 1;
            break;
        case 'm':
            user_multipath_delay = atof(optarg);
            break;
        case 'n':
            NodB = atof(optarg);
            break;
        case 'o':
            complex_out = 1;
            break;
        case 'p':
            fading_en = 2;
            break;
        case 'r':
            Fs = atoi(optarg);
            break;
        case 's':
            ssbfilt_en = atoi(optarg);
            break;
        case 't':
            ctest = 1;
            break;
        case 'u':
            fading_dir = strdup(optarg);
            break;
        case 'h':
        case '?':
            goto helpmsg;
            break;
        }
    }

    phase_ch.real = 1.0; phase_ch.imag = 0.0;

    /*  N = var = NoFs */

    // arbitrary noise scaling, to maintain backwards compatibility with many tests.  TODO make the No
    // units more sensible, and fix all the tests that depend on this scaling
    No = pow(10.0, NodB/10.0)*1000*1000;
    variance = Fs*No;

    tx_pwr = tx_pwr_fade = noise_pwr = 0.0;
    noutclipped = 0; nclipped = 0;
    peak = 0.0;

    /* init HF fading model */

    ffading = NULL;
    nhfdelay = 0;
    if (fading_en) {
        char fname[256];

        if (fading_en == 1) {
            sprintf(fname, "%s/%s", fading_dir, MPG_FADING_FILE_NAME);
            ffading = fopen(fname, "rb");
            if (ffading == NULL) {
            cant_load_fading_file:
                fprintf(stderr, "-----------------------------------------------------\n");
                fprintf(stderr, "ch ERROR: Can't find fading file: %s\n", fname);
                fprintf(stderr, "\nAdjust path --fading_dir or use GNU Octave to generate:\n\n");
            gen_fading_file:
                fprintf(stderr, "$ octave --no-gui\n");
                fprintf(stderr, "octave:24> pkg load signal\n");
                fprintf(stderr, "octave:24> time_secs=60\n");
                fprintf(stderr, "octave:25> ch_fading(\"faster_fading_samples.float\", 8000, 2.0, 8000*time_secs)\n");
                fprintf(stderr, "octave:26> ch_fading(\"fast_fading_samples.float\", 8000, 1.0, 8000*time_secs)\n");
                fprintf(stderr, "octave:27> ch_fading(\"slow_fading_samples.float\", 8000, 0.1, 8000*time_secs)\n");
                fprintf(stderr, "-----------------------------------------------------\n");
                exit(1);
            }
            nhfdelay = floor(MPG_DELAY_MS*Fs/1000);
        }

        if (fading_en == 2) {
            sprintf(fname, "%s/%s", fading_dir, MPP_FADING_FILE_NAME);
            ffading = fopen(fname, "rb");
            if (ffading == NULL) goto cant_load_fading_file;
            nhfdelay = floor(MPP_DELAY_MS*Fs/1000);
        }

        if (fading_en == 3) {
	          sprintf(fname, "%s/%s", fading_dir, MPD_FADING_FILE_NAME);
            ffading = fopen(fname, "rb");
            if (ffading == NULL) goto cant_load_fading_file;
            nhfdelay = floor(MPD_DELAY_MS*Fs/1000);
        }

        ch_fdm_delay = (COMP*)MALLOC((nhfdelay+COHPSK_NOM_SAMPLES_PER_FRAME)*sizeof(COMP));
        assert(ch_fdm_delay != NULL);
        for(i=0; i<nhfdelay+COHPSK_NOM_SAMPLES_PER_FRAME; i++) {
            ch_fdm_delay[i].real = 0.0;
            ch_fdm_delay[i].imag = 0.0;
        }

        /* optionally override delay from command line */
        if (user_multipath_delay >= 0.0) nhfdelay = floor(user_multipath_delay*Fs/1000);

        /* first values in file are HF gains */

        for (i=0; i<4; i++)
            ret = fread(&hf_gain, sizeof(float), 1, ffading);
        //fprintf(stderr, "hf_gain: %f\n", hf_gain);
    }

    assert(HT_N == sizeof(ht_coeff)/sizeof(COMP));
    for(i=0; i<HT_N; i++) {
        htbuf[i] = 0.0;
    }
    for(i=0; i<SSBFILT_N; i++) {
        ssbfiltbuf[i].real = 0.0; ssbfiltbuf[i].imag = 0.0;
    }
    COMP lo_phase = {1.0,0.0};
    COMP lo_freq;
    lo_freq.real = cos(2.0*M_PI*SSBFILT_CENTRE/Fs);
    lo_freq.imag = sin(2.0*M_PI*SSBFILT_CENTRE/Fs);

    fprintf(stderr, "ch: Fs: %d NodB: %4.2f foff: %4.2f Hz fading: %d nhfdelay: %d clip: %4.2f ssbfilt: %d complexout: %d\n",
            Fs, NodB, foff_hz, fading_en, nhfdelay, clip, ssbfilt_en, complex_out);

    /* --------------------------------------------------------*\
	                          Main Loop
    \*---------------------------------------------------------*/

    frames = 0;
    while(fread(buf, sizeof(short), BUF_N, fin) == BUF_N) {
        frames++;

        /* Hilbert Transform to produce complex signal so we can do
           single sided freq shifts, HF channel models, and analog
           compression.  Allows us to use real signal I/O.

           As the real and imag filters both have unity gain, ch_in[]
           has twice the power of the real input signal buf[].
        */

        for(i=0, j=HT_N; i<BUF_N; i++,j++) {

            htbuf[j] = (float)buf[i]*gain;

            /* FIR filter with HT to get imag, just delay to get real */

            ch_in[i].real = 0.0;
            ch_in[i].imag = 0.0;
            for(k=0; k<HT_N; k++) {
                ch_in[i].real += htbuf[j-k]*ht_coeff[k].real;
                ch_in[i].imag += htbuf[j-k]*ht_coeff[k].imag;
            }
            //printf("%d %f %f\n", i, ch_in[i].real, ch_in[i].imag);
        }
        assert(j <= (BUF_N+HT_N));

        /* update HT memory */
        for(i=0; i<HT_N; i++)
           htbuf[i] = htbuf[i+BUF_N];

        /* --------------------------------------------------------*\
   	                    Clipping  mag of complex signal
        \*---------------------------------------------------------*/

        for(i=0; i<BUF_N; i++) {
            float mag = sqrt(ch_in[i].real*ch_in[i].real + ch_in[i].imag*ch_in[i].imag);
            float angle = atan2(ch_in[i].imag, ch_in[i].real);
            if (mag > clip) {
              mag = clip;
              nclipped++;
            }
            tx_pwr += mag*mag;
            /* we get a bit of overshoot in peak measurements if HT filter hasn't been primed */
            if (frames*BUF_N > HT_N)
                if (mag > peak) {
                    peak = mag;
                    //fprintf(stderr, "%d %f\n",frames, mag);
                }
            ch_in[i].real = mag*cos(angle);
            ch_in[i].imag = mag*sin(angle);
        }

	/* --------------------------------------------------------*\
	                         Channel
	\*---------------------------------------------------------*/

        fdmdv_freq_shift_coh(ch_fdm, ch_in, foff_hz, Fs, &phase_ch, BUF_N);

        /* optional HF fading -------------------------------------*/

        if (fading_en) {

            /* update delayed signal buffer */

            for(i=0; i<nhfdelay; i++)
                ch_fdm_delay[i] = ch_fdm_delay[i+BUF_N];
            for(j=0; j<BUF_N; i++, j++)
                ch_fdm_delay[i] = ch_fdm[j];

            /* combine direct and delayed paths, both multiplied by
               "spreading" (Doppler) functions */

            for(i=0; i<BUF_N; i++) {
                ret = fread(&aspread, sizeof(COMP), 1, ffading);
                if (ret == 0) {
                    fprintf(stderr, "ch: Fading file finished - simulation stopping.  You may need more samples:\n");
                    goto gen_fading_file;
                    }
                ret = fread(&aspread_2ms, sizeof(COMP), 1, ffading);
                if (ret == 0) {
                    fprintf(stderr, "ch: Fading file finished - simulation stopping.  You may need more samples:\n");
                    goto gen_fading_file;
                }
                //printf("%f %f %f %f\n", aspread.real, aspread.imag, aspread_2ms.real, aspread_2ms.imag);

                direct    = cmult(aspread, ch_fdm[i]);
                delayed   = cmult(aspread_2ms, ch_fdm_delay[i]);
                ch_fdm[i] = fcmult(hf_gain, cadd(direct, delayed));
            }
        }

        /* Measure power after fading model to make sure average pwr
           is the same as AWGN channels. We only output the real
           signal, which is half the power. */

        for(i=0; i<BUF_N; i++) {
            tx_pwr_fade += pow(ch_fdm[i].real, 2.0);
        }

        /* AWGN noise ------------------------------------------*/

        for(i=0; i<BUF_N; i++) {
            COMP n = noise();
            scaled_noise = fcmult(sqrt(variance), n);
            ch_fdm[i] = cadd(ch_fdm[i], scaled_noise);
            noise_pwr += pow(scaled_noise.real, 2.0) + pow(scaled_noise.imag, 2.0);
        }

        /* FIR filter to simulate (a rather flat) SSB filter. We
           filter the complex signal by shifting it down to DC and
           using real coefficients. */

        for(i=0, j=SSBFILT_N; i<BUF_N; i++,j++) {
            if (ssbfilt_en) {
                ssbfiltbuf[j] = cmult(ch_fdm[i], cconj(lo_phase));
                ssbfiltout[i].real = 0.0; ssbfiltout[i].imag = 0.0;
                for(k=0; k<SSBFILT_N; k++) {
                    ssbfiltout[i].real += ssbfiltbuf[j-k].real*ssbfilt_coeff[k];
                    ssbfiltout[i].imag += ssbfiltbuf[j-k].imag*ssbfilt_coeff[k];
                }
                ssbfiltout[i] = cmult(ssbfiltout[i], lo_phase);
                lo_phase = cmult(lo_phase, lo_freq);
            }
            else {
                ssbfiltout[i] = ch_fdm[i];
            }
        }

        /* update SSB filter memory */
        for(i=0; i<SSBFILT_N; i++)
           ssbfiltbuf[i] = ssbfiltbuf[i+BUF_N];

        int nout = (complex_out+1)*BUF_N;
        short bufout[nout], *pout=bufout;
        for(i=0; i<BUF_N; i++) {
            sam = ssbfiltout[i].real;
            if (sam >  32767.0) { noutclipped++; sam = 32767.0; }
            if (sam < -32767.0) { noutclipped++; sam = -32767.0; }
            *pout++ = sam;
            if (complex_out) {
                sam = ssbfiltout[i].imag;
                if (sam >  32767.0) { noutclipped++; sam = 32767.0; }
                if (sam < -32767.0) { noutclipped++; sam = -32767.0; }
                *pout++ = sam;
            }
        }

        fwrite(bufout, sizeof(short), nout, fout);

        /* if this is in a pipeline, we probably don't want the usual
           buffering to occur */

        if (fout == stdout) fflush(stdout);
    }

    fclose(fin);
    fclose(fout);

    int nsamples = frames*BUF_N;
    papr = 10*log10(peak*peak/(tx_pwr/nsamples));
    CNo = 10*log10(tx_pwr/(noise_pwr/(Fs)));
    snr3k = CNo - 10*log10(3000);
    float outclipped_percent = noutclipped*100.0/nsamples;
    fprintf(stderr, "ch: SNR3k(dB): %8.2f  C/No....: %8.2f\n", snr3k, CNo);
    fprintf(stderr, "ch: peak.....: %8.2f  RMS.....: %8.2f   CPAPR.....: %5.2f \n", peak, sqrt(tx_pwr/nsamples), papr);
    fprintf(stderr, "ch: Nsamples.: %8d  clipped.: %8.2f%%  OutClipped: %5.2f%%\n",
                    nsamples, nclipped*100.0/nsamples, outclipped_percent);
    if (outclipped_percent > 0.1) fprintf(stderr, "ch: WARNING output clipping\n");

    if (ffading != NULL) fclose(ffading);
    if (ch_fdm_delay != NULL) FREE(ch_fdm_delay);
    if (ctest) {
        /* special ctest mode: check CPAPR is around 0dB */
        if (fabs(papr) < 0.7) return 0; else return 1;
    }
    else return 0;
}