``` % pandoc -f latex -t native \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \theoremstyle{remark} \newtheorem{remark}{Remark} \begin{definition}[right-angled triangles] \label{def:tri} A \emph{right-angled triangle} is a triangle whose sides of length~\(a\), \(b\) and~\(c\), in some permutation of order, satisfies \(a^2+b^2=c^2\). \end{definition} \begin{lemma} The triangle with sides of length~\(3\), \(4\) and~\(5\) is right-angled. \end{lemma} \begin{proof} This lemma follows from \cref{def:tri} since \(3^2+4^2=9+16=25=5^2\). \end{proof} \begin{theorem}[Pythagorean triplets] \label{thm:py} Triangles with sides of length \(a=p^2-q^2\), \(b=2pq\) and \(c=p^2+q^2\) are right-angled triangles. \end{theorem} \begin{remark} These are all pretty interesting facts. \end{remark} ^D [ Div ( "def:tri" , [ "definition" ] , [] ) [ Para [ Strong [ Str "Definition 1" ] , Str " (right-angled triangles). A " , Emph [ Str "right-angled triangle" ] , Str " is a triangle whose sides of length\160" , Math InlineMath "a" , Str ", " , Math InlineMath "b" , Str " and\160" , Math InlineMath "c" , Str ", in some permutation of order, satisfies " , Math InlineMath "a^2+b^2=c^2" , Str "." ] ] , Div ( "" , [ "lemma" ] , [] ) [ Para [ Strong [ Str "Lemma 2" ] , Str ". " , Emph [ Str "The triangle with sides of length\160" , Math InlineMath "3" , Str ", " , Math InlineMath "4" , Str " and\160" , Math InlineMath "5" , Str " is right-angled." ] ] ] , Div ( "" , [ "proof" ] , [] ) [ Para [ Emph [ Str "Proof." ] , Str " This lemma follows from " , Link ( "" , [] , [ ( "reference-type" , "ref" ) , ( "reference" , "def:tri" ) ] ) [ Str "Definition\160\&1" ] ( "#def:tri" , "" ) , Str " since " , Math InlineMath "3^2+4^2=9+16=25=5^2" , Str ".\160\9723" ] ] , Div ( "thm:py" , [ "theorem" ] , [] ) [ Para [ Strong [ Str "Theorem 3" ] , Str " (Pythagorean triplets). " , Emph [ Str "Triangles with sides of length " , Math InlineMath "a=p^2-q^2" , Str ", " , Math InlineMath "b=2pq" , Str " and " , Math InlineMath "c=p^2+q^2" , Str " are right-angled triangles." ] ] ] , Div ( "" , [ "remark" ] , [] ) [ Para [ Emph [ Str "Remark 1" ] , Str ". These are all pretty interesting facts." ] ] ] ```