diff options
| author | Smoke <[email protected]> | 2024-01-19 10:51:52 -1000 |
|---|---|---|
| committer | Smoke <[email protected]> | 2024-01-19 10:51:52 -1000 |
| commit | 70bb2c77356d349165ba46ea98f8346284c2e44e (patch) | |
| tree | 7a1f858ca12386f7bd9478550e29bf3c1af109b5 /lora/stuff.go | |
| parent | 320bb2e1e7dfe5092ea1f6b65a9c6e53e58ce387 (diff) | |
updates
Diffstat (limited to 'lora/stuff.go')
| -rw-r--r-- | lora/stuff.go | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/lora/stuff.go b/lora/stuff.go new file mode 100644 index 0000000..1cee21a --- /dev/null +++ b/lora/stuff.go @@ -0,0 +1,84 @@ +// Package loraradio provides functionality to determine values for a LoRa radio link, +// including maximum data rate and link budget while accounting for receiver sensitivity. +package lora + +import ( + "fmt" + "math" +) + +// TODO: needs cleanup. lots of gpt generated code + +// MaxDataRate calculates the maximum data rate for a LoRa radio link based on the provided parameters. +func MaxDataRate(bandwidth, spreadingFactor, codeRate float64) float64 { + // Assuming the LoRa modulation's data rate equation: + // Data Rate = BW / (2^SF) * CR + // where SF is the spreading factor, BW is the bandwidth in Hz, and CR is the code rate. + return (bandwidth / math.Pow(2, spreadingFactor)) * codeRate * spreadingFactor +} + +// Simplified link budget calculation per the Semtech calculator +func LinkBudget(rxSensitivity, transmitPower float64) float64 { + return transmitPower - rxSensitivity +} + +// SensitivityParams holds the parameters used for sensitivity calculations. +type SensitivityParams struct { + Bandwidth float64 // in Hz + ImplementationL float64 // Implementation loss in dB, typically 1-3 dB + SpreadingFactor int // LoRa Spreading Factor +} + +// SpreadingFactorData holds the data for each spreading factor. +type SpreadingFactorData struct { + SF int + ChipsPerSymbol int + DemodulatorSNR float64 +} + +var SpreadingFactors = []SpreadingFactorData{ + {SF: 5, ChipsPerSymbol: 32, DemodulatorSNR: -2.5}, + {SF: 6, ChipsPerSymbol: 64, DemodulatorSNR: -5}, + {SF: 7, ChipsPerSymbol: 128, DemodulatorSNR: -7.5}, + {SF: 8, ChipsPerSymbol: 256, DemodulatorSNR: -10}, + {SF: 9, ChipsPerSymbol: 512, DemodulatorSNR: -12.5}, + {SF: 10, ChipsPerSymbol: 1024, DemodulatorSNR: -15}, + {SF: 11, ChipsPerSymbol: 2048, DemodulatorSNR: -17.5}, + {SF: 12, ChipsPerSymbol: 4096, DemodulatorSNR: -20}, +} + +// CalculateSensitivity calculates the LoRa receiver sensitivity based on the provided parameters. +func CalculateSensitivity(params SensitivityParams, spreadingFactors []SpreadingFactorData) (float64, error) { + if params.Bandwidth <= 0 { + return 0, fmt.Errorf("bandwidth must be greater than 0") + } + + // Find the SNR for the given spreading factor from the provided data. + var snr float64 + found := false + for _, sfData := range spreadingFactors { + if sfData.SF == params.SpreadingFactor { + snr = sfData.DemodulatorSNR + found = true + break + } + } + if !found { + return 0, fmt.Errorf("spreading factor data not found for SF=%d", params.SpreadingFactor) + } + + // Thermal noise in dBm for the given bandwidth at room temperature (290K). + thermalNoise := -174.0 // dBm/Hz + + // Noise figure in dBm for the given bandwidth. + noiseFigure := thermalNoise + 10*math.Log10(params.Bandwidth) + + // Receiver sensitivity calculation in dBm. + sensitivity := noiseFigure + snr + params.ImplementationL + + return sensitivity, nil +} +func SNR(spreadingFactor int) float64 { + result := (float64(spreadingFactor) - 4) * -2.5 + return result * 100 / 100 +} |
