diff options
| author | Jack O'Connor <[email protected]> | 2020-02-11 14:13:30 -0500 |
|---|---|---|
| committer | Jack O'Connor <[email protected]> | 2020-02-12 10:23:17 -0500 |
| commit | efbfa0463c793dc1319db10ca4e3b809937b227d (patch) | |
| tree | b643427eb38da8dc9b6548814e7e34966b604791 /src/rust_sse41.rs | |
| parent | b6b3c27824e665a73f77fd147da2052efff0ab8a (diff) | |
integrate assembly implementations into the blake3 crate
Diffstat (limited to 'src/rust_sse41.rs')
| -rw-r--r-- | src/rust_sse41.rs | 766 |
1 files changed, 766 insertions, 0 deletions
diff --git a/src/rust_sse41.rs b/src/rust_sse41.rs new file mode 100644 index 0000000..fcf2f98 --- /dev/null +++ b/src/rust_sse41.rs @@ -0,0 +1,766 @@ +#[cfg(target_arch = "x86")] +use core::arch::x86::*; +#[cfg(target_arch = "x86_64")] +use core::arch::x86_64::*; + +use crate::{ + counter_high, counter_low, CVBytes, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE, + OUT_LEN, +}; +use arrayref::{array_mut_ref, array_ref, mut_array_refs}; + +pub const DEGREE: usize = 4; + +#[inline(always)] +unsafe fn loadu(src: *const u8) -> __m128i { + // This is an unaligned load, so the pointer cast is allowed. + _mm_loadu_si128(src as *const __m128i) +} + +#[inline(always)] +unsafe fn storeu(src: __m128i, dest: *mut u8) { + // This is an unaligned store, so the pointer cast is allowed. + _mm_storeu_si128(dest as *mut __m128i, src) +} + +#[inline(always)] +unsafe fn add(a: __m128i, b: __m128i) -> __m128i { + _mm_add_epi32(a, b) +} + +#[inline(always)] +unsafe fn xor(a: __m128i, b: __m128i) -> __m128i { + _mm_xor_si128(a, b) +} + +#[inline(always)] +unsafe fn set1(x: u32) -> __m128i { + _mm_set1_epi32(x as i32) +} + +#[inline(always)] +unsafe fn set4(a: u32, b: u32, c: u32, d: u32) -> __m128i { + _mm_setr_epi32(a as i32, b as i32, c as i32, d as i32) +} + +// These rotations are the "simple/shifts version". For the +// "complicated/shuffles version", see +// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66. +// For a discussion of the tradeoffs, see +// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug +// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better +// on recent x86 chips. + +#[inline(always)] +unsafe fn rot16(a: __m128i) -> __m128i { + _mm_or_si128(_mm_srli_epi32(a, 16), _mm_slli_epi32(a, 32 - 16)) +} + +#[inline(always)] +unsafe fn rot12(a: __m128i) -> __m128i { + _mm_or_si128(_mm_srli_epi32(a, 12), _mm_slli_epi32(a, 32 - 12)) +} + +#[inline(always)] +unsafe fn rot8(a: __m128i) -> __m128i { + _mm_or_si128(_mm_srli_epi32(a, 8), _mm_slli_epi32(a, 32 - 8)) +} + +#[inline(always)] +unsafe fn rot7(a: __m128i) -> __m128i { + _mm_or_si128(_mm_srli_epi32(a, 7), _mm_slli_epi32(a, 32 - 7)) +} + +#[inline(always)] +unsafe fn g1( + row0: &mut __m128i, + row1: &mut __m128i, + row2: &mut __m128i, + row3: &mut __m128i, + m: __m128i, +) { + *row0 = add(add(*row0, m), *row1); + *row3 = xor(*row3, *row0); + *row3 = rot16(*row3); + *row2 = add(*row2, *row3); + *row1 = xor(*row1, *row2); + *row1 = rot12(*row1); +} + +#[inline(always)] +unsafe fn g2( + row0: &mut __m128i, + row1: &mut __m128i, + row2: &mut __m128i, + row3: &mut __m128i, + m: __m128i, +) { + *row0 = add(add(*row0, m), *row1); + *row3 = xor(*row3, *row0); + *row3 = rot8(*row3); + *row2 = add(*row2, *row3); + *row1 = xor(*row1, *row2); + *row1 = rot7(*row1); +} + +// Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479. +macro_rules! _MM_SHUFFLE { + ($z:expr, $y:expr, $x:expr, $w:expr) => { + ($z << 6) | ($y << 4) | ($x << 2) | $w + }; +} + +macro_rules! shuffle2 { + ($a:expr, $b:expr, $c:expr) => { + _mm_castps_si128(_mm_shuffle_ps( + _mm_castsi128_ps($a), + _mm_castsi128_ps($b), + $c, + )) + }; +} + +// Note the optimization here of leaving row1 as the unrotated row, rather than +// row0. All the message loads below are adjusted to compensate for this. See +// discussion at https://github.com/sneves/blake2-avx2/pull/4 +#[inline(always)] +unsafe fn diagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(2, 1, 0, 3)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(0, 3, 2, 1)); +} + +#[inline(always)] +unsafe fn undiagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(0, 3, 2, 1)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(2, 1, 0, 3)); +} + +#[inline(always)] +unsafe fn compress_pre( + cv: &CVWords, + block: &[u8; BLOCK_LEN], + block_len: u8, + counter: u64, + flags: u8, +) -> [__m128i; 4] { + let row0 = &mut loadu(cv.as_ptr().add(0) as *const u8); + let row1 = &mut loadu(cv.as_ptr().add(4) as *const u8); + let row2 = &mut set4(IV[0], IV[1], IV[2], IV[3]); + let row3 = &mut set4( + counter_low(counter), + counter_high(counter), + block_len as u32, + flags as u32, + ); + + let mut m0 = loadu(block.as_ptr().add(0 * 4 * DEGREE)); + let mut m1 = loadu(block.as_ptr().add(1 * 4 * DEGREE)); + let mut m2 = loadu(block.as_ptr().add(2 * 4 * DEGREE)); + let mut m3 = loadu(block.as_ptr().add(3 * 4 * DEGREE)); + + let mut t0; + let mut t1; + let mut t2; + let mut t3; + let mut tt; + + // Round 1. The first round permutes the message words from the original + // input order, into the groups that get mixed in parallel. + t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(2, 0, 2, 0)); // 6 4 2 0 + g1(row0, row1, row2, row3, t0); + t1 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 3, 1)); // 7 5 3 1 + g2(row0, row1, row2, row3, t1); + diagonalize(row0, row2, row3); + t2 = shuffle2!(m2, m3, _MM_SHUFFLE!(2, 0, 2, 0)); // 14 12 10 8 + t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE!(2, 1, 0, 3)); // 12 10 8 14 + g1(row0, row1, row2, row3, t2); + t3 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 1, 3, 1)); // 15 13 11 9 + t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE!(2, 1, 0, 3)); // 13 11 9 15 + g2(row0, row1, row2, row3, t3); + undiagonalize(row0, row2, row3); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 2. This round and all following rounds apply a fixed permutation + // to the message words from the round before. + t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1)); + g1(row0, row1, row2, row3, t0); + t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(row0, row1, row2, row3, t1); + diagonalize(row0, row2, row3); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0)); + g1(row0, row1, row2, row3, t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2)); + g2(row0, row1, row2, row3, t3); + undiagonalize(row0, row2, row3); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 3 + t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1)); + g1(row0, row1, row2, row3, t0); + t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(row0, row1, row2, row3, t1); + diagonalize(row0, row2, row3); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0)); + g1(row0, row1, row2, row3, t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2)); + g2(row0, row1, row2, row3, t3); + undiagonalize(row0, row2, row3); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 4 + t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1)); + g1(row0, row1, row2, row3, t0); + t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(row0, row1, row2, row3, t1); + diagonalize(row0, row2, row3); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0)); + g1(row0, row1, row2, row3, t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2)); + g2(row0, row1, row2, row3, t3); + undiagonalize(row0, row2, row3); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 5 + t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1)); + g1(row0, row1, row2, row3, t0); + t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(row0, row1, row2, row3, t1); + diagonalize(row0, row2, row3); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0)); + g1(row0, row1, row2, row3, t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2)); + g2(row0, row1, row2, row3, t3); + undiagonalize(row0, row2, row3); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 6 + t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1)); + g1(row0, row1, row2, row3, t0); + t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(row0, row1, row2, row3, t1); + diagonalize(row0, row2, row3); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0)); + g1(row0, row1, row2, row3, t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2)); + g2(row0, row1, row2, row3, t3); + undiagonalize(row0, row2, row3); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 7 + t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1)); + g1(row0, row1, row2, row3, t0); + t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(row0, row1, row2, row3, t1); + diagonalize(row0, row2, row3); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0)); + g1(row0, row1, row2, row3, t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2)); + g2(row0, row1, row2, row3, t3); + undiagonalize(row0, row2, row3); + + [*row0, *row1, *row2, *row3] +} + +#[target_feature(enable = "sse4.1")] +pub unsafe fn compress_in_place( + cv: &mut CVWords, + block: &[u8; BLOCK_LEN], + block_len: u8, + counter: u64, + flags: u8, +) { + let [row0, row1, row2, row3] = compress_pre(cv, block, block_len, counter, flags); + storeu(xor(row0, row2), cv.as_mut_ptr().add(0) as *mut u8); + storeu(xor(row1, row3), cv.as_mut_ptr().add(4) as *mut u8); +} + +#[target_feature(enable = "sse4.1")] +pub unsafe fn compress_xof( + cv: &CVWords, + block: &[u8; BLOCK_LEN], + block_len: u8, + counter: u64, + flags: u8, +) -> [u8; 64] { + let [mut row0, mut row1, mut row2, mut row3] = + compress_pre(cv, block, block_len, counter, flags); + row0 = xor(row0, row2); + row1 = xor(row1, row3); + row2 = xor(row2, loadu(cv.as_ptr().add(0) as *const u8)); + row3 = xor(row3, loadu(cv.as_ptr().add(4) as *const u8)); + core::mem::transmute([row0, row1, row2, row3]) +} + +#[inline(always)] +unsafe fn round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize) { + v[0] = add(v[0], m[MSG_SCHEDULE[r][0] as usize]); + v[1] = add(v[1], m[MSG_SCHEDULE[r][2] as usize]); + v[2] = add(v[2], m[MSG_SCHEDULE[r][4] as usize]); + v[3] = add(v[3], m[MSG_SCHEDULE[r][6] as usize]); + v[0] = add(v[0], v[4]); + v[1] = add(v[1], v[5]); + v[2] = add(v[2], v[6]); + v[3] = add(v[3], v[7]); + v[12] = xor(v[12], v[0]); + v[13] = xor(v[13], v[1]); + v[14] = xor(v[14], v[2]); + v[15] = xor(v[15], v[3]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[15] = rot16(v[15]); + v[8] = add(v[8], v[12]); + v[9] = add(v[9], v[13]); + v[10] = add(v[10], v[14]); + v[11] = add(v[11], v[15]); + v[4] = xor(v[4], v[8]); + v[5] = xor(v[5], v[9]); + v[6] = xor(v[6], v[10]); + v[7] = xor(v[7], v[11]); + v[4] = rot12(v[4]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[0] = add(v[0], m[MSG_SCHEDULE[r][1] as usize]); + v[1] = add(v[1], m[MSG_SCHEDULE[r][3] as usize]); + v[2] = add(v[2], m[MSG_SCHEDULE[r][5] as usize]); + v[3] = add(v[3], m[MSG_SCHEDULE[r][7] as usize]); + v[0] = add(v[0], v[4]); + v[1] = add(v[1], v[5]); + v[2] = add(v[2], v[6]); + v[3] = add(v[3], v[7]); + v[12] = xor(v[12], v[0]); + v[13] = xor(v[13], v[1]); + v[14] = xor(v[14], v[2]); + v[15] = xor(v[15], v[3]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[15] = rot8(v[15]); + v[8] = add(v[8], v[12]); + v[9] = add(v[9], v[13]); + v[10] = add(v[10], v[14]); + v[11] = add(v[11], v[15]); + v[4] = xor(v[4], v[8]); + v[5] = xor(v[5], v[9]); + v[6] = xor(v[6], v[10]); + v[7] = xor(v[7], v[11]); + v[4] = rot7(v[4]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + + v[0] = add(v[0], m[MSG_SCHEDULE[r][8] as usize]); + v[1] = add(v[1], m[MSG_SCHEDULE[r][10] as usize]); + v[2] = add(v[2], m[MSG_SCHEDULE[r][12] as usize]); + v[3] = add(v[3], m[MSG_SCHEDULE[r][14] as usize]); + v[0] = add(v[0], v[5]); + v[1] = add(v[1], v[6]); + v[2] = add(v[2], v[7]); + v[3] = add(v[3], v[4]); + v[15] = xor(v[15], v[0]); + v[12] = xor(v[12], v[1]); + v[13] = xor(v[13], v[2]); + v[14] = xor(v[14], v[3]); + v[15] = rot16(v[15]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[10] = add(v[10], v[15]); + v[11] = add(v[11], v[12]); + v[8] = add(v[8], v[13]); + v[9] = add(v[9], v[14]); + v[5] = xor(v[5], v[10]); + v[6] = xor(v[6], v[11]); + v[7] = xor(v[7], v[8]); + v[4] = xor(v[4], v[9]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[4] = rot12(v[4]); + v[0] = add(v[0], m[MSG_SCHEDULE[r][9] as usize]); + v[1] = add(v[1], m[MSG_SCHEDULE[r][11] as usize]); + v[2] = add(v[2], m[MSG_SCHEDULE[r][13] as usize]); + v[3] = add(v[3], m[MSG_SCHEDULE[r][15] as usize]); + v[0] = add(v[0], v[5]); + v[1] = add(v[1], v[6]); + v[2] = add(v[2], v[7]); + v[3] = add(v[3], v[4]); + v[15] = xor(v[15], v[0]); + v[12] = xor(v[12], v[1]); + v[13] = xor(v[13], v[2]); + v[14] = xor(v[14], v[3]); + v[15] = rot8(v[15]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[10] = add(v[10], v[15]); + v[11] = add(v[11], v[12]); + v[8] = add(v[8], v[13]); + v[9] = add(v[9], v[14]); + v[5] = xor(v[5], v[10]); + v[6] = xor(v[6], v[11]); + v[7] = xor(v[7], v[8]); + v[4] = xor(v[4], v[9]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + v[4] = rot7(v[4]); +} + +#[inline(always)] +unsafe fn transpose_vecs(vecs: &mut [__m128i; DEGREE]) { + // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is + // 22/33. Note that this doesn't split the vector into two lanes, as the + // AVX2 counterparts do. + let ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); + let ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); + let cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); + let cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); + + // Interleave 64-bit lanes. + let abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); + let abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); + let abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); + let abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); + + vecs[0] = abcd_0; + vecs[1] = abcd_1; + vecs[2] = abcd_2; + vecs[3] = abcd_3; +} + +#[inline(always)] +unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [__m128i; 16] { + let mut vecs = [ + loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)), + loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)), + loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)), + loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)), + loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)), + loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)), + loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)), + loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)), + loadu(inputs[0].add(block_offset + 2 * 4 * DEGREE)), + loadu(inputs[1].add(block_offset + 2 * 4 * DEGREE)), + loadu(inputs[2].add(block_offset + 2 * 4 * DEGREE)), + loadu(inputs[3].add(block_offset + 2 * 4 * DEGREE)), + loadu(inputs[0].add(block_offset + 3 * 4 * DEGREE)), + loadu(inputs[1].add(block_offset + 3 * 4 * DEGREE)), + loadu(inputs[2].add(block_offset + 3 * 4 * DEGREE)), + loadu(inputs[3].add(block_offset + 3 * 4 * DEGREE)), + ]; + for i in 0..DEGREE { + _mm_prefetch(inputs[i].add(block_offset + 256) as * const i8, _MM_HINT_T0); + } + let squares = mut_array_refs!(&mut vecs, DEGREE, DEGREE, DEGREE, DEGREE); + transpose_vecs(squares.0); + transpose_vecs(squares.1); + transpose_vecs(squares.2); + transpose_vecs(squares.3); + vecs +} + +#[inline(always)] +unsafe fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (__m128i, __m128i) { + let mask = if increment_counter.yes() { !0 } else { 0 }; + ( + set4( + counter_low(counter + (mask & 0)), + counter_low(counter + (mask & 1)), + counter_low(counter + (mask & 2)), + counter_low(counter + (mask & 3)), + ), + set4( + counter_high(counter + (mask & 0)), + counter_high(counter + (mask & 1)), + counter_high(counter + (mask & 2)), + counter_high(counter + (mask & 3)), + ), + ) +} + +#[target_feature(enable = "sse4.1")] +pub unsafe fn hash4( + inputs: &[*const u8; DEGREE], + blocks: usize, + key: &CVWords, + counter: u64, + increment_counter: IncrementCounter, + flags: u8, + flags_start: u8, + flags_end: u8, + out: &mut [u8; DEGREE * OUT_LEN], +) { + let mut h_vecs = [ + set1(key[0]), + set1(key[1]), + set1(key[2]), + set1(key[3]), + set1(key[4]), + set1(key[5]), + set1(key[6]), + set1(key[7]), + ]; + let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter); + let mut block_flags = flags | flags_start; + + for block in 0..blocks { + if block + 1 == blocks { + block_flags |= flags_end; + } + let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only + let block_flags_vec = set1(block_flags as u32); + let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN); + + // The transposed compression function. Note that inlining this + // manually here improves compile times by a lot, compared to factoring + // it out into its own function and making it #[inline(always)]. Just + // guessing, it might have something to do with loop unrolling. + let mut v = [ + h_vecs[0], + h_vecs[1], + h_vecs[2], + h_vecs[3], + h_vecs[4], + h_vecs[5], + h_vecs[6], + h_vecs[7], + set1(IV[0]), + set1(IV[1]), + set1(IV[2]), + set1(IV[3]), + counter_low_vec, + counter_high_vec, + block_len_vec, + block_flags_vec, + ]; + round(&mut v, &msg_vecs, 0); + round(&mut v, &msg_vecs, 1); + round(&mut v, &msg_vecs, 2); + round(&mut v, &msg_vecs, 3); + round(&mut v, &msg_vecs, 4); + round(&mut v, &msg_vecs, 5); + round(&mut v, &msg_vecs, 6); + h_vecs[0] = xor(v[0], v[8]); + h_vecs[1] = xor(v[1], v[9]); + h_vecs[2] = xor(v[2], v[10]); + h_vecs[3] = xor(v[3], v[11]); + h_vecs[4] = xor(v[4], v[12]); + h_vecs[5] = xor(v[5], v[13]); + h_vecs[6] = xor(v[6], v[14]); + h_vecs[7] = xor(v[7], v[15]); + + block_flags = flags; + } + + let squares = mut_array_refs!(&mut h_vecs, DEGREE, DEGREE); + transpose_vecs(squares.0); + transpose_vecs(squares.1); + // The first four vecs now contain the first half of each output, and the + // second four vecs contain the second half of each output. + storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE)); + storeu(h_vecs[4], out.as_mut_ptr().add(1 * 4 * DEGREE)); + storeu(h_vecs[1], out.as_mut_ptr().add(2 * 4 * DEGREE)); + storeu(h_vecs[5], out.as_mut_ptr().add(3 * 4 * DEGREE)); + storeu(h_vecs[2], out.as_mut_ptr().add(4 * 4 * DEGREE)); + storeu(h_vecs[6], out.as_mut_ptr().add(5 * 4 * DEGREE)); + storeu(h_vecs[3], out.as_mut_ptr().add(6 * 4 * DEGREE)); + storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE)); +} + +#[target_feature(enable = "sse4.1")] +unsafe fn hash1<A: arrayvec::Array<Item = u8>>( + input: &A, + key: &CVWords, + counter: u64, + flags: u8, + flags_start: u8, + flags_end: u8, + out: &mut CVBytes, +) { + debug_assert_eq!(A::CAPACITY % BLOCK_LEN, 0, "uneven blocks"); + let mut cv = *key; + let mut block_flags = flags | flags_start; + let mut slice = input.as_slice(); + while slice.len() >= BLOCK_LEN { + if slice.len() == BLOCK_LEN { + block_flags |= flags_end; + } + compress_in_place( + &mut cv, + array_ref!(slice, 0, BLOCK_LEN), + BLOCK_LEN as u8, + counter, + block_flags, + ); + block_flags = flags; + slice = &slice[BLOCK_LEN..]; + } + *out = core::mem::transmute(cv); // x86 is little-endian +} + +#[target_feature(enable = "sse4.1")] +pub unsafe fn hash_many<A: arrayvec::Array<Item = u8>>( + mut inputs: &[&A], + key: &CVWords, + mut counter: u64, + increment_counter: IncrementCounter, + flags: u8, + flags_start: u8, + flags_end: u8, + mut out: &mut [u8], +) { + debug_assert!(out.len() >= inputs.len() * OUT_LEN, "out too short"); + while inputs.len() >= DEGREE && out.len() >= DEGREE * OUT_LEN { + // Safe because the layout of arrays is guaranteed, and because the + // `blocks` count is determined statically from the argument type. + let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]); + let blocks = A::CAPACITY / BLOCK_LEN; + hash4( + input_ptrs, + blocks, + key, + counter, + increment_counter, + flags, + flags_start, + flags_end, + array_mut_ref!(out, 0, DEGREE * OUT_LEN), + ); + if increment_counter.yes() { + counter += DEGREE as u64; + } + inputs = &inputs[DEGREE..]; + out = &mut out[DEGREE * OUT_LEN..]; + } + for (&input, output) in inputs.iter().zip(out.chunks_exact_mut(OUT_LEN)) { + hash1( + input, + key, + counter, + flags, + flags_start, + flags_end, + array_mut_ref!(output, 0, OUT_LEN), + ); + if increment_counter.yes() { + counter += 1; + } + } +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn test_transpose() { + if !crate::platform::sse41_detected() { + return; + } + + #[target_feature(enable = "sse4.1")] + unsafe fn transpose_wrapper(vecs: &mut [__m128i; DEGREE]) { + transpose_vecs(vecs); + } + + let mut matrix = [[0 as u32; DEGREE]; DEGREE]; + for i in 0..DEGREE { + for j in 0..DEGREE { + matrix[i][j] = (i * DEGREE + j) as u32; + } + } + + unsafe { + let mut vecs: [__m128i; DEGREE] = core::mem::transmute(matrix); + transpose_wrapper(&mut vecs); + matrix = core::mem::transmute(vecs); + } + + for i in 0..DEGREE { + for j in 0..DEGREE { + // Reversed indexes from above. + assert_eq!(matrix[j][i], (i * DEGREE + j) as u32); + } + } + } + + #[test] + fn test_compress() { + if !crate::platform::sse41_detected() { + return; + } + crate::test::test_compress_fn(compress_in_place, compress_xof); + } + + #[test] + fn test_hash_many() { + if !crate::platform::sse41_detected() { + return; + } + crate::test::test_hash_many_fn(hash_many, hash_many); + } +} |
