aboutsummaryrefslogtreecommitdiff
path: root/src/rust_sse41.rs
diff options
context:
space:
mode:
authorJack O'Connor <[email protected]>2020-02-11 14:13:30 -0500
committerJack O'Connor <[email protected]>2020-02-12 10:23:17 -0500
commitefbfa0463c793dc1319db10ca4e3b809937b227d (patch)
treeb643427eb38da8dc9b6548814e7e34966b604791 /src/rust_sse41.rs
parentb6b3c27824e665a73f77fd147da2052efff0ab8a (diff)
integrate assembly implementations into the blake3 crate
Diffstat (limited to 'src/rust_sse41.rs')
-rw-r--r--src/rust_sse41.rs766
1 files changed, 766 insertions, 0 deletions
diff --git a/src/rust_sse41.rs b/src/rust_sse41.rs
new file mode 100644
index 0000000..fcf2f98
--- /dev/null
+++ b/src/rust_sse41.rs
@@ -0,0 +1,766 @@
+#[cfg(target_arch = "x86")]
+use core::arch::x86::*;
+#[cfg(target_arch = "x86_64")]
+use core::arch::x86_64::*;
+
+use crate::{
+ counter_high, counter_low, CVBytes, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE,
+ OUT_LEN,
+};
+use arrayref::{array_mut_ref, array_ref, mut_array_refs};
+
+pub const DEGREE: usize = 4;
+
+#[inline(always)]
+unsafe fn loadu(src: *const u8) -> __m128i {
+ // This is an unaligned load, so the pointer cast is allowed.
+ _mm_loadu_si128(src as *const __m128i)
+}
+
+#[inline(always)]
+unsafe fn storeu(src: __m128i, dest: *mut u8) {
+ // This is an unaligned store, so the pointer cast is allowed.
+ _mm_storeu_si128(dest as *mut __m128i, src)
+}
+
+#[inline(always)]
+unsafe fn add(a: __m128i, b: __m128i) -> __m128i {
+ _mm_add_epi32(a, b)
+}
+
+#[inline(always)]
+unsafe fn xor(a: __m128i, b: __m128i) -> __m128i {
+ _mm_xor_si128(a, b)
+}
+
+#[inline(always)]
+unsafe fn set1(x: u32) -> __m128i {
+ _mm_set1_epi32(x as i32)
+}
+
+#[inline(always)]
+unsafe fn set4(a: u32, b: u32, c: u32, d: u32) -> __m128i {
+ _mm_setr_epi32(a as i32, b as i32, c as i32, d as i32)
+}
+
+// These rotations are the "simple/shifts version". For the
+// "complicated/shuffles version", see
+// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66.
+// For a discussion of the tradeoffs, see
+// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug
+// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better
+// on recent x86 chips.
+
+#[inline(always)]
+unsafe fn rot16(a: __m128i) -> __m128i {
+ _mm_or_si128(_mm_srli_epi32(a, 16), _mm_slli_epi32(a, 32 - 16))
+}
+
+#[inline(always)]
+unsafe fn rot12(a: __m128i) -> __m128i {
+ _mm_or_si128(_mm_srli_epi32(a, 12), _mm_slli_epi32(a, 32 - 12))
+}
+
+#[inline(always)]
+unsafe fn rot8(a: __m128i) -> __m128i {
+ _mm_or_si128(_mm_srli_epi32(a, 8), _mm_slli_epi32(a, 32 - 8))
+}
+
+#[inline(always)]
+unsafe fn rot7(a: __m128i) -> __m128i {
+ _mm_or_si128(_mm_srli_epi32(a, 7), _mm_slli_epi32(a, 32 - 7))
+}
+
+#[inline(always)]
+unsafe fn g1(
+ row0: &mut __m128i,
+ row1: &mut __m128i,
+ row2: &mut __m128i,
+ row3: &mut __m128i,
+ m: __m128i,
+) {
+ *row0 = add(add(*row0, m), *row1);
+ *row3 = xor(*row3, *row0);
+ *row3 = rot16(*row3);
+ *row2 = add(*row2, *row3);
+ *row1 = xor(*row1, *row2);
+ *row1 = rot12(*row1);
+}
+
+#[inline(always)]
+unsafe fn g2(
+ row0: &mut __m128i,
+ row1: &mut __m128i,
+ row2: &mut __m128i,
+ row3: &mut __m128i,
+ m: __m128i,
+) {
+ *row0 = add(add(*row0, m), *row1);
+ *row3 = xor(*row3, *row0);
+ *row3 = rot8(*row3);
+ *row2 = add(*row2, *row3);
+ *row1 = xor(*row1, *row2);
+ *row1 = rot7(*row1);
+}
+
+// Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479.
+macro_rules! _MM_SHUFFLE {
+ ($z:expr, $y:expr, $x:expr, $w:expr) => {
+ ($z << 6) | ($y << 4) | ($x << 2) | $w
+ };
+}
+
+macro_rules! shuffle2 {
+ ($a:expr, $b:expr, $c:expr) => {
+ _mm_castps_si128(_mm_shuffle_ps(
+ _mm_castsi128_ps($a),
+ _mm_castsi128_ps($b),
+ $c,
+ ))
+ };
+}
+
+// Note the optimization here of leaving row1 as the unrotated row, rather than
+// row0. All the message loads below are adjusted to compensate for this. See
+// discussion at https://github.com/sneves/blake2-avx2/pull/4
+#[inline(always)]
+unsafe fn diagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
+ *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(2, 1, 0, 3));
+ *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
+ *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(0, 3, 2, 1));
+}
+
+#[inline(always)]
+unsafe fn undiagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
+ *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(0, 3, 2, 1));
+ *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
+ *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(2, 1, 0, 3));
+}
+
+#[inline(always)]
+unsafe fn compress_pre(
+ cv: &CVWords,
+ block: &[u8; BLOCK_LEN],
+ block_len: u8,
+ counter: u64,
+ flags: u8,
+) -> [__m128i; 4] {
+ let row0 = &mut loadu(cv.as_ptr().add(0) as *const u8);
+ let row1 = &mut loadu(cv.as_ptr().add(4) as *const u8);
+ let row2 = &mut set4(IV[0], IV[1], IV[2], IV[3]);
+ let row3 = &mut set4(
+ counter_low(counter),
+ counter_high(counter),
+ block_len as u32,
+ flags as u32,
+ );
+
+ let mut m0 = loadu(block.as_ptr().add(0 * 4 * DEGREE));
+ let mut m1 = loadu(block.as_ptr().add(1 * 4 * DEGREE));
+ let mut m2 = loadu(block.as_ptr().add(2 * 4 * DEGREE));
+ let mut m3 = loadu(block.as_ptr().add(3 * 4 * DEGREE));
+
+ let mut t0;
+ let mut t1;
+ let mut t2;
+ let mut t3;
+ let mut tt;
+
+ // Round 1. The first round permutes the message words from the original
+ // input order, into the groups that get mixed in parallel.
+ t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(2, 0, 2, 0)); // 6 4 2 0
+ g1(row0, row1, row2, row3, t0);
+ t1 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 3, 1)); // 7 5 3 1
+ g2(row0, row1, row2, row3, t1);
+ diagonalize(row0, row2, row3);
+ t2 = shuffle2!(m2, m3, _MM_SHUFFLE!(2, 0, 2, 0)); // 14 12 10 8
+ t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE!(2, 1, 0, 3)); // 12 10 8 14
+ g1(row0, row1, row2, row3, t2);
+ t3 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 1, 3, 1)); // 15 13 11 9
+ t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE!(2, 1, 0, 3)); // 13 11 9 15
+ g2(row0, row1, row2, row3, t3);
+ undiagonalize(row0, row2, row3);
+ m0 = t0;
+ m1 = t1;
+ m2 = t2;
+ m3 = t3;
+
+ // Round 2. This round and all following rounds apply a fixed permutation
+ // to the message words from the round before.
+ t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
+ t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
+ g1(row0, row1, row2, row3, t0);
+ t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
+ tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
+ t1 = _mm_blend_epi16(tt, t1, 0xCC);
+ g2(row0, row1, row2, row3, t1);
+ diagonalize(row0, row2, row3);
+ t2 = _mm_unpacklo_epi64(m3, m1);
+ tt = _mm_blend_epi16(t2, m2, 0xC0);
+ t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
+ g1(row0, row1, row2, row3, t2);
+ t3 = _mm_unpackhi_epi32(m1, m3);
+ tt = _mm_unpacklo_epi32(m2, t3);
+ t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
+ g2(row0, row1, row2, row3, t3);
+ undiagonalize(row0, row2, row3);
+ m0 = t0;
+ m1 = t1;
+ m2 = t2;
+ m3 = t3;
+
+ // Round 3
+ t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
+ t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
+ g1(row0, row1, row2, row3, t0);
+ t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
+ tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
+ t1 = _mm_blend_epi16(tt, t1, 0xCC);
+ g2(row0, row1, row2, row3, t1);
+ diagonalize(row0, row2, row3);
+ t2 = _mm_unpacklo_epi64(m3, m1);
+ tt = _mm_blend_epi16(t2, m2, 0xC0);
+ t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
+ g1(row0, row1, row2, row3, t2);
+ t3 = _mm_unpackhi_epi32(m1, m3);
+ tt = _mm_unpacklo_epi32(m2, t3);
+ t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
+ g2(row0, row1, row2, row3, t3);
+ undiagonalize(row0, row2, row3);
+ m0 = t0;
+ m1 = t1;
+ m2 = t2;
+ m3 = t3;
+
+ // Round 4
+ t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
+ t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
+ g1(row0, row1, row2, row3, t0);
+ t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
+ tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
+ t1 = _mm_blend_epi16(tt, t1, 0xCC);
+ g2(row0, row1, row2, row3, t1);
+ diagonalize(row0, row2, row3);
+ t2 = _mm_unpacklo_epi64(m3, m1);
+ tt = _mm_blend_epi16(t2, m2, 0xC0);
+ t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
+ g1(row0, row1, row2, row3, t2);
+ t3 = _mm_unpackhi_epi32(m1, m3);
+ tt = _mm_unpacklo_epi32(m2, t3);
+ t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
+ g2(row0, row1, row2, row3, t3);
+ undiagonalize(row0, row2, row3);
+ m0 = t0;
+ m1 = t1;
+ m2 = t2;
+ m3 = t3;
+
+ // Round 5
+ t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
+ t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
+ g1(row0, row1, row2, row3, t0);
+ t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
+ tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
+ t1 = _mm_blend_epi16(tt, t1, 0xCC);
+ g2(row0, row1, row2, row3, t1);
+ diagonalize(row0, row2, row3);
+ t2 = _mm_unpacklo_epi64(m3, m1);
+ tt = _mm_blend_epi16(t2, m2, 0xC0);
+ t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
+ g1(row0, row1, row2, row3, t2);
+ t3 = _mm_unpackhi_epi32(m1, m3);
+ tt = _mm_unpacklo_epi32(m2, t3);
+ t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
+ g2(row0, row1, row2, row3, t3);
+ undiagonalize(row0, row2, row3);
+ m0 = t0;
+ m1 = t1;
+ m2 = t2;
+ m3 = t3;
+
+ // Round 6
+ t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
+ t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
+ g1(row0, row1, row2, row3, t0);
+ t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
+ tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
+ t1 = _mm_blend_epi16(tt, t1, 0xCC);
+ g2(row0, row1, row2, row3, t1);
+ diagonalize(row0, row2, row3);
+ t2 = _mm_unpacklo_epi64(m3, m1);
+ tt = _mm_blend_epi16(t2, m2, 0xC0);
+ t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
+ g1(row0, row1, row2, row3, t2);
+ t3 = _mm_unpackhi_epi32(m1, m3);
+ tt = _mm_unpacklo_epi32(m2, t3);
+ t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
+ g2(row0, row1, row2, row3, t3);
+ undiagonalize(row0, row2, row3);
+ m0 = t0;
+ m1 = t1;
+ m2 = t2;
+ m3 = t3;
+
+ // Round 7
+ t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
+ t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
+ g1(row0, row1, row2, row3, t0);
+ t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
+ tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
+ t1 = _mm_blend_epi16(tt, t1, 0xCC);
+ g2(row0, row1, row2, row3, t1);
+ diagonalize(row0, row2, row3);
+ t2 = _mm_unpacklo_epi64(m3, m1);
+ tt = _mm_blend_epi16(t2, m2, 0xC0);
+ t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
+ g1(row0, row1, row2, row3, t2);
+ t3 = _mm_unpackhi_epi32(m1, m3);
+ tt = _mm_unpacklo_epi32(m2, t3);
+ t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
+ g2(row0, row1, row2, row3, t3);
+ undiagonalize(row0, row2, row3);
+
+ [*row0, *row1, *row2, *row3]
+}
+
+#[target_feature(enable = "sse4.1")]
+pub unsafe fn compress_in_place(
+ cv: &mut CVWords,
+ block: &[u8; BLOCK_LEN],
+ block_len: u8,
+ counter: u64,
+ flags: u8,
+) {
+ let [row0, row1, row2, row3] = compress_pre(cv, block, block_len, counter, flags);
+ storeu(xor(row0, row2), cv.as_mut_ptr().add(0) as *mut u8);
+ storeu(xor(row1, row3), cv.as_mut_ptr().add(4) as *mut u8);
+}
+
+#[target_feature(enable = "sse4.1")]
+pub unsafe fn compress_xof(
+ cv: &CVWords,
+ block: &[u8; BLOCK_LEN],
+ block_len: u8,
+ counter: u64,
+ flags: u8,
+) -> [u8; 64] {
+ let [mut row0, mut row1, mut row2, mut row3] =
+ compress_pre(cv, block, block_len, counter, flags);
+ row0 = xor(row0, row2);
+ row1 = xor(row1, row3);
+ row2 = xor(row2, loadu(cv.as_ptr().add(0) as *const u8));
+ row3 = xor(row3, loadu(cv.as_ptr().add(4) as *const u8));
+ core::mem::transmute([row0, row1, row2, row3])
+}
+
+#[inline(always)]
+unsafe fn round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize) {
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][0] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][2] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][4] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][6] as usize]);
+ v[0] = add(v[0], v[4]);
+ v[1] = add(v[1], v[5]);
+ v[2] = add(v[2], v[6]);
+ v[3] = add(v[3], v[7]);
+ v[12] = xor(v[12], v[0]);
+ v[13] = xor(v[13], v[1]);
+ v[14] = xor(v[14], v[2]);
+ v[15] = xor(v[15], v[3]);
+ v[12] = rot16(v[12]);
+ v[13] = rot16(v[13]);
+ v[14] = rot16(v[14]);
+ v[15] = rot16(v[15]);
+ v[8] = add(v[8], v[12]);
+ v[9] = add(v[9], v[13]);
+ v[10] = add(v[10], v[14]);
+ v[11] = add(v[11], v[15]);
+ v[4] = xor(v[4], v[8]);
+ v[5] = xor(v[5], v[9]);
+ v[6] = xor(v[6], v[10]);
+ v[7] = xor(v[7], v[11]);
+ v[4] = rot12(v[4]);
+ v[5] = rot12(v[5]);
+ v[6] = rot12(v[6]);
+ v[7] = rot12(v[7]);
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][1] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][3] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][5] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][7] as usize]);
+ v[0] = add(v[0], v[4]);
+ v[1] = add(v[1], v[5]);
+ v[2] = add(v[2], v[6]);
+ v[3] = add(v[3], v[7]);
+ v[12] = xor(v[12], v[0]);
+ v[13] = xor(v[13], v[1]);
+ v[14] = xor(v[14], v[2]);
+ v[15] = xor(v[15], v[3]);
+ v[12] = rot8(v[12]);
+ v[13] = rot8(v[13]);
+ v[14] = rot8(v[14]);
+ v[15] = rot8(v[15]);
+ v[8] = add(v[8], v[12]);
+ v[9] = add(v[9], v[13]);
+ v[10] = add(v[10], v[14]);
+ v[11] = add(v[11], v[15]);
+ v[4] = xor(v[4], v[8]);
+ v[5] = xor(v[5], v[9]);
+ v[6] = xor(v[6], v[10]);
+ v[7] = xor(v[7], v[11]);
+ v[4] = rot7(v[4]);
+ v[5] = rot7(v[5]);
+ v[6] = rot7(v[6]);
+ v[7] = rot7(v[7]);
+
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][8] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][10] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][12] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][14] as usize]);
+ v[0] = add(v[0], v[5]);
+ v[1] = add(v[1], v[6]);
+ v[2] = add(v[2], v[7]);
+ v[3] = add(v[3], v[4]);
+ v[15] = xor(v[15], v[0]);
+ v[12] = xor(v[12], v[1]);
+ v[13] = xor(v[13], v[2]);
+ v[14] = xor(v[14], v[3]);
+ v[15] = rot16(v[15]);
+ v[12] = rot16(v[12]);
+ v[13] = rot16(v[13]);
+ v[14] = rot16(v[14]);
+ v[10] = add(v[10], v[15]);
+ v[11] = add(v[11], v[12]);
+ v[8] = add(v[8], v[13]);
+ v[9] = add(v[9], v[14]);
+ v[5] = xor(v[5], v[10]);
+ v[6] = xor(v[6], v[11]);
+ v[7] = xor(v[7], v[8]);
+ v[4] = xor(v[4], v[9]);
+ v[5] = rot12(v[5]);
+ v[6] = rot12(v[6]);
+ v[7] = rot12(v[7]);
+ v[4] = rot12(v[4]);
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][9] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][11] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][13] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][15] as usize]);
+ v[0] = add(v[0], v[5]);
+ v[1] = add(v[1], v[6]);
+ v[2] = add(v[2], v[7]);
+ v[3] = add(v[3], v[4]);
+ v[15] = xor(v[15], v[0]);
+ v[12] = xor(v[12], v[1]);
+ v[13] = xor(v[13], v[2]);
+ v[14] = xor(v[14], v[3]);
+ v[15] = rot8(v[15]);
+ v[12] = rot8(v[12]);
+ v[13] = rot8(v[13]);
+ v[14] = rot8(v[14]);
+ v[10] = add(v[10], v[15]);
+ v[11] = add(v[11], v[12]);
+ v[8] = add(v[8], v[13]);
+ v[9] = add(v[9], v[14]);
+ v[5] = xor(v[5], v[10]);
+ v[6] = xor(v[6], v[11]);
+ v[7] = xor(v[7], v[8]);
+ v[4] = xor(v[4], v[9]);
+ v[5] = rot7(v[5]);
+ v[6] = rot7(v[6]);
+ v[7] = rot7(v[7]);
+ v[4] = rot7(v[4]);
+}
+
+#[inline(always)]
+unsafe fn transpose_vecs(vecs: &mut [__m128i; DEGREE]) {
+ // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
+ // 22/33. Note that this doesn't split the vector into two lanes, as the
+ // AVX2 counterparts do.
+ let ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
+ let ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
+ let cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
+ let cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
+
+ // Interleave 64-bit lanes.
+ let abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
+ let abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
+ let abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
+ let abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
+
+ vecs[0] = abcd_0;
+ vecs[1] = abcd_1;
+ vecs[2] = abcd_2;
+ vecs[3] = abcd_3;
+}
+
+#[inline(always)]
+unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [__m128i; 16] {
+ let mut vecs = [
+ loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[0].add(block_offset + 2 * 4 * DEGREE)),
+ loadu(inputs[1].add(block_offset + 2 * 4 * DEGREE)),
+ loadu(inputs[2].add(block_offset + 2 * 4 * DEGREE)),
+ loadu(inputs[3].add(block_offset + 2 * 4 * DEGREE)),
+ loadu(inputs[0].add(block_offset + 3 * 4 * DEGREE)),
+ loadu(inputs[1].add(block_offset + 3 * 4 * DEGREE)),
+ loadu(inputs[2].add(block_offset + 3 * 4 * DEGREE)),
+ loadu(inputs[3].add(block_offset + 3 * 4 * DEGREE)),
+ ];
+ for i in 0..DEGREE {
+ _mm_prefetch(inputs[i].add(block_offset + 256) as * const i8, _MM_HINT_T0);
+ }
+ let squares = mut_array_refs!(&mut vecs, DEGREE, DEGREE, DEGREE, DEGREE);
+ transpose_vecs(squares.0);
+ transpose_vecs(squares.1);
+ transpose_vecs(squares.2);
+ transpose_vecs(squares.3);
+ vecs
+}
+
+#[inline(always)]
+unsafe fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (__m128i, __m128i) {
+ let mask = if increment_counter.yes() { !0 } else { 0 };
+ (
+ set4(
+ counter_low(counter + (mask & 0)),
+ counter_low(counter + (mask & 1)),
+ counter_low(counter + (mask & 2)),
+ counter_low(counter + (mask & 3)),
+ ),
+ set4(
+ counter_high(counter + (mask & 0)),
+ counter_high(counter + (mask & 1)),
+ counter_high(counter + (mask & 2)),
+ counter_high(counter + (mask & 3)),
+ ),
+ )
+}
+
+#[target_feature(enable = "sse4.1")]
+pub unsafe fn hash4(
+ inputs: &[*const u8; DEGREE],
+ blocks: usize,
+ key: &CVWords,
+ counter: u64,
+ increment_counter: IncrementCounter,
+ flags: u8,
+ flags_start: u8,
+ flags_end: u8,
+ out: &mut [u8; DEGREE * OUT_LEN],
+) {
+ let mut h_vecs = [
+ set1(key[0]),
+ set1(key[1]),
+ set1(key[2]),
+ set1(key[3]),
+ set1(key[4]),
+ set1(key[5]),
+ set1(key[6]),
+ set1(key[7]),
+ ];
+ let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter);
+ let mut block_flags = flags | flags_start;
+
+ for block in 0..blocks {
+ if block + 1 == blocks {
+ block_flags |= flags_end;
+ }
+ let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only
+ let block_flags_vec = set1(block_flags as u32);
+ let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN);
+
+ // The transposed compression function. Note that inlining this
+ // manually here improves compile times by a lot, compared to factoring
+ // it out into its own function and making it #[inline(always)]. Just
+ // guessing, it might have something to do with loop unrolling.
+ let mut v = [
+ h_vecs[0],
+ h_vecs[1],
+ h_vecs[2],
+ h_vecs[3],
+ h_vecs[4],
+ h_vecs[5],
+ h_vecs[6],
+ h_vecs[7],
+ set1(IV[0]),
+ set1(IV[1]),
+ set1(IV[2]),
+ set1(IV[3]),
+ counter_low_vec,
+ counter_high_vec,
+ block_len_vec,
+ block_flags_vec,
+ ];
+ round(&mut v, &msg_vecs, 0);
+ round(&mut v, &msg_vecs, 1);
+ round(&mut v, &msg_vecs, 2);
+ round(&mut v, &msg_vecs, 3);
+ round(&mut v, &msg_vecs, 4);
+ round(&mut v, &msg_vecs, 5);
+ round(&mut v, &msg_vecs, 6);
+ h_vecs[0] = xor(v[0], v[8]);
+ h_vecs[1] = xor(v[1], v[9]);
+ h_vecs[2] = xor(v[2], v[10]);
+ h_vecs[3] = xor(v[3], v[11]);
+ h_vecs[4] = xor(v[4], v[12]);
+ h_vecs[5] = xor(v[5], v[13]);
+ h_vecs[6] = xor(v[6], v[14]);
+ h_vecs[7] = xor(v[7], v[15]);
+
+ block_flags = flags;
+ }
+
+ let squares = mut_array_refs!(&mut h_vecs, DEGREE, DEGREE);
+ transpose_vecs(squares.0);
+ transpose_vecs(squares.1);
+ // The first four vecs now contain the first half of each output, and the
+ // second four vecs contain the second half of each output.
+ storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE));
+ storeu(h_vecs[4], out.as_mut_ptr().add(1 * 4 * DEGREE));
+ storeu(h_vecs[1], out.as_mut_ptr().add(2 * 4 * DEGREE));
+ storeu(h_vecs[5], out.as_mut_ptr().add(3 * 4 * DEGREE));
+ storeu(h_vecs[2], out.as_mut_ptr().add(4 * 4 * DEGREE));
+ storeu(h_vecs[6], out.as_mut_ptr().add(5 * 4 * DEGREE));
+ storeu(h_vecs[3], out.as_mut_ptr().add(6 * 4 * DEGREE));
+ storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE));
+}
+
+#[target_feature(enable = "sse4.1")]
+unsafe fn hash1<A: arrayvec::Array<Item = u8>>(
+ input: &A,
+ key: &CVWords,
+ counter: u64,
+ flags: u8,
+ flags_start: u8,
+ flags_end: u8,
+ out: &mut CVBytes,
+) {
+ debug_assert_eq!(A::CAPACITY % BLOCK_LEN, 0, "uneven blocks");
+ let mut cv = *key;
+ let mut block_flags = flags | flags_start;
+ let mut slice = input.as_slice();
+ while slice.len() >= BLOCK_LEN {
+ if slice.len() == BLOCK_LEN {
+ block_flags |= flags_end;
+ }
+ compress_in_place(
+ &mut cv,
+ array_ref!(slice, 0, BLOCK_LEN),
+ BLOCK_LEN as u8,
+ counter,
+ block_flags,
+ );
+ block_flags = flags;
+ slice = &slice[BLOCK_LEN..];
+ }
+ *out = core::mem::transmute(cv); // x86 is little-endian
+}
+
+#[target_feature(enable = "sse4.1")]
+pub unsafe fn hash_many<A: arrayvec::Array<Item = u8>>(
+ mut inputs: &[&A],
+ key: &CVWords,
+ mut counter: u64,
+ increment_counter: IncrementCounter,
+ flags: u8,
+ flags_start: u8,
+ flags_end: u8,
+ mut out: &mut [u8],
+) {
+ debug_assert!(out.len() >= inputs.len() * OUT_LEN, "out too short");
+ while inputs.len() >= DEGREE && out.len() >= DEGREE * OUT_LEN {
+ // Safe because the layout of arrays is guaranteed, and because the
+ // `blocks` count is determined statically from the argument type.
+ let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]);
+ let blocks = A::CAPACITY / BLOCK_LEN;
+ hash4(
+ input_ptrs,
+ blocks,
+ key,
+ counter,
+ increment_counter,
+ flags,
+ flags_start,
+ flags_end,
+ array_mut_ref!(out, 0, DEGREE * OUT_LEN),
+ );
+ if increment_counter.yes() {
+ counter += DEGREE as u64;
+ }
+ inputs = &inputs[DEGREE..];
+ out = &mut out[DEGREE * OUT_LEN..];
+ }
+ for (&input, output) in inputs.iter().zip(out.chunks_exact_mut(OUT_LEN)) {
+ hash1(
+ input,
+ key,
+ counter,
+ flags,
+ flags_start,
+ flags_end,
+ array_mut_ref!(output, 0, OUT_LEN),
+ );
+ if increment_counter.yes() {
+ counter += 1;
+ }
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_transpose() {
+ if !crate::platform::sse41_detected() {
+ return;
+ }
+
+ #[target_feature(enable = "sse4.1")]
+ unsafe fn transpose_wrapper(vecs: &mut [__m128i; DEGREE]) {
+ transpose_vecs(vecs);
+ }
+
+ let mut matrix = [[0 as u32; DEGREE]; DEGREE];
+ for i in 0..DEGREE {
+ for j in 0..DEGREE {
+ matrix[i][j] = (i * DEGREE + j) as u32;
+ }
+ }
+
+ unsafe {
+ let mut vecs: [__m128i; DEGREE] = core::mem::transmute(matrix);
+ transpose_wrapper(&mut vecs);
+ matrix = core::mem::transmute(vecs);
+ }
+
+ for i in 0..DEGREE {
+ for j in 0..DEGREE {
+ // Reversed indexes from above.
+ assert_eq!(matrix[j][i], (i * DEGREE + j) as u32);
+ }
+ }
+ }
+
+ #[test]
+ fn test_compress() {
+ if !crate::platform::sse41_detected() {
+ return;
+ }
+ crate::test::test_compress_fn(compress_in_place, compress_xof);
+ }
+
+ #[test]
+ fn test_hash_many() {
+ if !crate::platform::sse41_detected() {
+ return;
+ }
+ crate::test::test_hash_many_fn(hash_many, hash_many);
+ }
+}