aboutsummaryrefslogtreecommitdiff
path: root/src/rust_avx2.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/rust_avx2.rs')
-rw-r--r--src/rust_avx2.rs474
1 files changed, 474 insertions, 0 deletions
diff --git a/src/rust_avx2.rs b/src/rust_avx2.rs
new file mode 100644
index 0000000..7f36072
--- /dev/null
+++ b/src/rust_avx2.rs
@@ -0,0 +1,474 @@
+#[cfg(target_arch = "x86")]
+use core::arch::x86::*;
+#[cfg(target_arch = "x86_64")]
+use core::arch::x86_64::*;
+
+use crate::{
+ counter_high, counter_low, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE, OUT_LEN,
+};
+use arrayref::{array_mut_ref, mut_array_refs};
+
+pub const DEGREE: usize = 8;
+
+#[inline(always)]
+unsafe fn loadu(src: *const u8) -> __m256i {
+ // This is an unaligned load, so the pointer cast is allowed.
+ _mm256_loadu_si256(src as *const __m256i)
+}
+
+#[inline(always)]
+unsafe fn storeu(src: __m256i, dest: *mut u8) {
+ // This is an unaligned store, so the pointer cast is allowed.
+ _mm256_storeu_si256(dest as *mut __m256i, src)
+}
+
+#[inline(always)]
+unsafe fn add(a: __m256i, b: __m256i) -> __m256i {
+ _mm256_add_epi32(a, b)
+}
+
+#[inline(always)]
+unsafe fn xor(a: __m256i, b: __m256i) -> __m256i {
+ _mm256_xor_si256(a, b)
+}
+
+#[inline(always)]
+unsafe fn set1(x: u32) -> __m256i {
+ _mm256_set1_epi32(x as i32)
+}
+
+#[inline(always)]
+unsafe fn set8(a: u32, b: u32, c: u32, d: u32, e: u32, f: u32, g: u32, h: u32) -> __m256i {
+ _mm256_setr_epi32(
+ a as i32, b as i32, c as i32, d as i32, e as i32, f as i32, g as i32, h as i32,
+ )
+}
+
+// These rotations are the "simple/shifts version". For the
+// "complicated/shuffles version", see
+// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66.
+// For a discussion of the tradeoffs, see
+// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug
+// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better
+// on recent x86 chips.
+
+#[inline(always)]
+unsafe fn rot16(x: __m256i) -> __m256i {
+ _mm256_or_si256(_mm256_srli_epi32(x, 16), _mm256_slli_epi32(x, 32 - 16))
+}
+
+#[inline(always)]
+unsafe fn rot12(x: __m256i) -> __m256i {
+ _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12))
+}
+
+#[inline(always)]
+unsafe fn rot8(x: __m256i) -> __m256i {
+ _mm256_or_si256(_mm256_srli_epi32(x, 8), _mm256_slli_epi32(x, 32 - 8))
+}
+
+#[inline(always)]
+unsafe fn rot7(x: __m256i) -> __m256i {
+ _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7))
+}
+
+#[inline(always)]
+unsafe fn round(v: &mut [__m256i; 16], m: &[__m256i; 16], r: usize) {
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][0] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][2] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][4] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][6] as usize]);
+ v[0] = add(v[0], v[4]);
+ v[1] = add(v[1], v[5]);
+ v[2] = add(v[2], v[6]);
+ v[3] = add(v[3], v[7]);
+ v[12] = xor(v[12], v[0]);
+ v[13] = xor(v[13], v[1]);
+ v[14] = xor(v[14], v[2]);
+ v[15] = xor(v[15], v[3]);
+ v[12] = rot16(v[12]);
+ v[13] = rot16(v[13]);
+ v[14] = rot16(v[14]);
+ v[15] = rot16(v[15]);
+ v[8] = add(v[8], v[12]);
+ v[9] = add(v[9], v[13]);
+ v[10] = add(v[10], v[14]);
+ v[11] = add(v[11], v[15]);
+ v[4] = xor(v[4], v[8]);
+ v[5] = xor(v[5], v[9]);
+ v[6] = xor(v[6], v[10]);
+ v[7] = xor(v[7], v[11]);
+ v[4] = rot12(v[4]);
+ v[5] = rot12(v[5]);
+ v[6] = rot12(v[6]);
+ v[7] = rot12(v[7]);
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][1] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][3] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][5] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][7] as usize]);
+ v[0] = add(v[0], v[4]);
+ v[1] = add(v[1], v[5]);
+ v[2] = add(v[2], v[6]);
+ v[3] = add(v[3], v[7]);
+ v[12] = xor(v[12], v[0]);
+ v[13] = xor(v[13], v[1]);
+ v[14] = xor(v[14], v[2]);
+ v[15] = xor(v[15], v[3]);
+ v[12] = rot8(v[12]);
+ v[13] = rot8(v[13]);
+ v[14] = rot8(v[14]);
+ v[15] = rot8(v[15]);
+ v[8] = add(v[8], v[12]);
+ v[9] = add(v[9], v[13]);
+ v[10] = add(v[10], v[14]);
+ v[11] = add(v[11], v[15]);
+ v[4] = xor(v[4], v[8]);
+ v[5] = xor(v[5], v[9]);
+ v[6] = xor(v[6], v[10]);
+ v[7] = xor(v[7], v[11]);
+ v[4] = rot7(v[4]);
+ v[5] = rot7(v[5]);
+ v[6] = rot7(v[6]);
+ v[7] = rot7(v[7]);
+
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][8] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][10] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][12] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][14] as usize]);
+ v[0] = add(v[0], v[5]);
+ v[1] = add(v[1], v[6]);
+ v[2] = add(v[2], v[7]);
+ v[3] = add(v[3], v[4]);
+ v[15] = xor(v[15], v[0]);
+ v[12] = xor(v[12], v[1]);
+ v[13] = xor(v[13], v[2]);
+ v[14] = xor(v[14], v[3]);
+ v[15] = rot16(v[15]);
+ v[12] = rot16(v[12]);
+ v[13] = rot16(v[13]);
+ v[14] = rot16(v[14]);
+ v[10] = add(v[10], v[15]);
+ v[11] = add(v[11], v[12]);
+ v[8] = add(v[8], v[13]);
+ v[9] = add(v[9], v[14]);
+ v[5] = xor(v[5], v[10]);
+ v[6] = xor(v[6], v[11]);
+ v[7] = xor(v[7], v[8]);
+ v[4] = xor(v[4], v[9]);
+ v[5] = rot12(v[5]);
+ v[6] = rot12(v[6]);
+ v[7] = rot12(v[7]);
+ v[4] = rot12(v[4]);
+ v[0] = add(v[0], m[MSG_SCHEDULE[r][9] as usize]);
+ v[1] = add(v[1], m[MSG_SCHEDULE[r][11] as usize]);
+ v[2] = add(v[2], m[MSG_SCHEDULE[r][13] as usize]);
+ v[3] = add(v[3], m[MSG_SCHEDULE[r][15] as usize]);
+ v[0] = add(v[0], v[5]);
+ v[1] = add(v[1], v[6]);
+ v[2] = add(v[2], v[7]);
+ v[3] = add(v[3], v[4]);
+ v[15] = xor(v[15], v[0]);
+ v[12] = xor(v[12], v[1]);
+ v[13] = xor(v[13], v[2]);
+ v[14] = xor(v[14], v[3]);
+ v[15] = rot8(v[15]);
+ v[12] = rot8(v[12]);
+ v[13] = rot8(v[13]);
+ v[14] = rot8(v[14]);
+ v[10] = add(v[10], v[15]);
+ v[11] = add(v[11], v[12]);
+ v[8] = add(v[8], v[13]);
+ v[9] = add(v[9], v[14]);
+ v[5] = xor(v[5], v[10]);
+ v[6] = xor(v[6], v[11]);
+ v[7] = xor(v[7], v[8]);
+ v[4] = xor(v[4], v[9]);
+ v[5] = rot7(v[5]);
+ v[6] = rot7(v[6]);
+ v[7] = rot7(v[7]);
+ v[4] = rot7(v[4]);
+}
+
+#[inline(always)]
+unsafe fn interleave128(a: __m256i, b: __m256i) -> (__m256i, __m256i) {
+ (
+ _mm256_permute2x128_si256(a, b, 0x20),
+ _mm256_permute2x128_si256(a, b, 0x31),
+ )
+}
+
+// There are several ways to do a transposition. We could do it naively, with 8 separate
+// _mm256_set_epi32 instructions, referencing each of the 32 words explicitly. Or we could copy
+// the vecs into contiguous storage and then use gather instructions. This third approach is to use
+// a series of unpack instructions to interleave the vectors. In my benchmarks, interleaving is the
+// fastest approach. To test this, run `cargo +nightly bench --bench libtest load_8` in the
+// https://github.com/oconnor663/bao_experiments repo.
+#[inline(always)]
+unsafe fn transpose_vecs(vecs: &mut [__m256i; DEGREE]) {
+ // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high is 22/33/66/77.
+ let ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
+ let ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
+ let cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
+ let cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
+ let ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
+ let ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
+ let gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
+ let gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
+
+ // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is 11/33.
+ let abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
+ let abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
+ let abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
+ let abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
+ let efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
+ let efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
+ let efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
+ let efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
+
+ // Interleave 128-bit lanes.
+ let (abcdefgh_0, abcdefgh_4) = interleave128(abcd_04, efgh_04);
+ let (abcdefgh_1, abcdefgh_5) = interleave128(abcd_15, efgh_15);
+ let (abcdefgh_2, abcdefgh_6) = interleave128(abcd_26, efgh_26);
+ let (abcdefgh_3, abcdefgh_7) = interleave128(abcd_37, efgh_37);
+
+ vecs[0] = abcdefgh_0;
+ vecs[1] = abcdefgh_1;
+ vecs[2] = abcdefgh_2;
+ vecs[3] = abcdefgh_3;
+ vecs[4] = abcdefgh_4;
+ vecs[5] = abcdefgh_5;
+ vecs[6] = abcdefgh_6;
+ vecs[7] = abcdefgh_7;
+}
+
+#[inline(always)]
+unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [__m256i; 16] {
+ let mut vecs = [
+ loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[4].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[5].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[6].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[7].add(block_offset + 0 * 4 * DEGREE)),
+ loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[4].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[5].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[6].add(block_offset + 1 * 4 * DEGREE)),
+ loadu(inputs[7].add(block_offset + 1 * 4 * DEGREE)),
+ ];
+ for i in 0..DEGREE {
+ _mm_prefetch(inputs[i].add(block_offset + 256) as * const i8, _MM_HINT_T0);
+ }
+ let squares = mut_array_refs!(&mut vecs, DEGREE, DEGREE);
+ transpose_vecs(squares.0);
+ transpose_vecs(squares.1);
+ vecs
+}
+
+#[inline(always)]
+unsafe fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (__m256i, __m256i) {
+ let mask = if increment_counter.yes() { !0 } else { 0 };
+ (
+ set8(
+ counter_low(counter + (mask & 0)),
+ counter_low(counter + (mask & 1)),
+ counter_low(counter + (mask & 2)),
+ counter_low(counter + (mask & 3)),
+ counter_low(counter + (mask & 4)),
+ counter_low(counter + (mask & 5)),
+ counter_low(counter + (mask & 6)),
+ counter_low(counter + (mask & 7)),
+ ),
+ set8(
+ counter_high(counter + (mask & 0)),
+ counter_high(counter + (mask & 1)),
+ counter_high(counter + (mask & 2)),
+ counter_high(counter + (mask & 3)),
+ counter_high(counter + (mask & 4)),
+ counter_high(counter + (mask & 5)),
+ counter_high(counter + (mask & 6)),
+ counter_high(counter + (mask & 7)),
+ ),
+ )
+}
+
+#[target_feature(enable = "avx2")]
+pub unsafe fn hash8(
+ inputs: &[*const u8; DEGREE],
+ blocks: usize,
+ key: &CVWords,
+ counter: u64,
+ increment_counter: IncrementCounter,
+ flags: u8,
+ flags_start: u8,
+ flags_end: u8,
+ out: &mut [u8; DEGREE * OUT_LEN],
+) {
+ let mut h_vecs = [
+ set1(key[0]),
+ set1(key[1]),
+ set1(key[2]),
+ set1(key[3]),
+ set1(key[4]),
+ set1(key[5]),
+ set1(key[6]),
+ set1(key[7]),
+ ];
+ let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter);
+ let mut block_flags = flags | flags_start;
+
+ for block in 0..blocks {
+ if block + 1 == blocks {
+ block_flags |= flags_end;
+ }
+ let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only
+ let block_flags_vec = set1(block_flags as u32);
+ let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN);
+
+ // The transposed compression function. Note that inlining this
+ // manually here improves compile times by a lot, compared to factoring
+ // it out into its own function and making it #[inline(always)]. Just
+ // guessing, it might have something to do with loop unrolling.
+ let mut v = [
+ h_vecs[0],
+ h_vecs[1],
+ h_vecs[2],
+ h_vecs[3],
+ h_vecs[4],
+ h_vecs[5],
+ h_vecs[6],
+ h_vecs[7],
+ set1(IV[0]),
+ set1(IV[1]),
+ set1(IV[2]),
+ set1(IV[3]),
+ counter_low_vec,
+ counter_high_vec,
+ block_len_vec,
+ block_flags_vec,
+ ];
+ round(&mut v, &msg_vecs, 0);
+ round(&mut v, &msg_vecs, 1);
+ round(&mut v, &msg_vecs, 2);
+ round(&mut v, &msg_vecs, 3);
+ round(&mut v, &msg_vecs, 4);
+ round(&mut v, &msg_vecs, 5);
+ round(&mut v, &msg_vecs, 6);
+ h_vecs[0] = xor(v[0], v[8]);
+ h_vecs[1] = xor(v[1], v[9]);
+ h_vecs[2] = xor(v[2], v[10]);
+ h_vecs[3] = xor(v[3], v[11]);
+ h_vecs[4] = xor(v[4], v[12]);
+ h_vecs[5] = xor(v[5], v[13]);
+ h_vecs[6] = xor(v[6], v[14]);
+ h_vecs[7] = xor(v[7], v[15]);
+
+ block_flags = flags;
+ }
+
+ transpose_vecs(&mut h_vecs);
+ storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE));
+ storeu(h_vecs[1], out.as_mut_ptr().add(1 * 4 * DEGREE));
+ storeu(h_vecs[2], out.as_mut_ptr().add(2 * 4 * DEGREE));
+ storeu(h_vecs[3], out.as_mut_ptr().add(3 * 4 * DEGREE));
+ storeu(h_vecs[4], out.as_mut_ptr().add(4 * 4 * DEGREE));
+ storeu(h_vecs[5], out.as_mut_ptr().add(5 * 4 * DEGREE));
+ storeu(h_vecs[6], out.as_mut_ptr().add(6 * 4 * DEGREE));
+ storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE));
+}
+
+#[target_feature(enable = "avx2")]
+pub unsafe fn hash_many<A: arrayvec::Array<Item = u8>>(
+ mut inputs: &[&A],
+ key: &CVWords,
+ mut counter: u64,
+ increment_counter: IncrementCounter,
+ flags: u8,
+ flags_start: u8,
+ flags_end: u8,
+ mut out: &mut [u8],
+) {
+ debug_assert!(out.len() >= inputs.len() * OUT_LEN, "out too short");
+ while inputs.len() >= DEGREE && out.len() >= DEGREE * OUT_LEN {
+ // Safe because the layout of arrays is guaranteed, and because the
+ // `blocks` count is determined statically from the argument type.
+ let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]);
+ let blocks = A::CAPACITY / BLOCK_LEN;
+ hash8(
+ input_ptrs,
+ blocks,
+ key,
+ counter,
+ increment_counter,
+ flags,
+ flags_start,
+ flags_end,
+ array_mut_ref!(out, 0, DEGREE * OUT_LEN),
+ );
+ if increment_counter.yes() {
+ counter += DEGREE as u64;
+ }
+ inputs = &inputs[DEGREE..];
+ out = &mut out[DEGREE * OUT_LEN..];
+ }
+ crate::sse41::hash_many(
+ inputs,
+ key,
+ counter,
+ increment_counter,
+ flags,
+ flags_start,
+ flags_end,
+ out,
+ );
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_transpose() {
+ if !crate::platform::avx2_detected() {
+ return;
+ }
+
+ #[target_feature(enable = "avx2")]
+ unsafe fn transpose_wrapper(vecs: &mut [__m256i; DEGREE]) {
+ transpose_vecs(vecs);
+ }
+
+ let mut matrix = [[0 as u32; DEGREE]; DEGREE];
+ for i in 0..DEGREE {
+ for j in 0..DEGREE {
+ matrix[i][j] = (i * DEGREE + j) as u32;
+ }
+ }
+
+ unsafe {
+ let mut vecs: [__m256i; DEGREE] = core::mem::transmute(matrix);
+ transpose_wrapper(&mut vecs);
+ matrix = core::mem::transmute(vecs);
+ }
+
+ for i in 0..DEGREE {
+ for j in 0..DEGREE {
+ // Reversed indexes from above.
+ assert_eq!(matrix[j][i], (i * DEGREE + j) as u32);
+ }
+ }
+ }
+
+ #[test]
+ fn test_hash_many() {
+ if !crate::platform::avx2_detected() {
+ return;
+ }
+ crate::test::test_hash_many_fn(hash_many, hash_many);
+ }
+}