aboutsummaryrefslogtreecommitdiff
path: root/octave/fm.m
diff options
context:
space:
mode:
Diffstat (limited to 'octave/fm.m')
-rw-r--r--octave/fm.m484
1 files changed, 484 insertions, 0 deletions
diff --git a/octave/fm.m b/octave/fm.m
new file mode 100644
index 0000000..e25432f
--- /dev/null
+++ b/octave/fm.m
@@ -0,0 +1,484 @@
+% fm.m
+% David Rowe Dec 2014
+%
+% Analog FM Octave simulation functions.
+
+1;
+
+graphics_toolkit ("gnuplot");
+
+function fm_states = analog_fm_init(fm_states)
+
+ % FM modulator constants
+
+ Fs = fm_states.Fs; FsOn2 = Fs/2;
+ fm_max = fm_states.fm_max; % max modulation freq
+ fd = fm_states.fd; % (max) deviation
+ fm_states.m = fd/fm_max; % modulation index
+ fm_states.Bfm = Bfm = 2*(fd+fm_max); % Carson's rule for FM signal bandwidth
+ fm_states.tc = tc = 50E-6;
+ fm_states.prede = [1 -(1 - 1/(tc*Fs))]; % pre/de emp filter coeffs
+ fm_states.ph_dont_limit = 0; % Limit rx delta-phase
+
+ % Select length of filter to be an integer number of symbols to
+ % assist with "fine" timing offset estimation. Set Ts to 1 for
+ % analog modulation.
+
+ Ts = fm_states.Ts;
+ desired_ncoeffs = 200;
+ ncoeffs = floor(desired_ncoeffs/Ts+1)*Ts;
+
+ % "coarse" timing offset is half filter length, we have two filters.
+ % This is the delay the two filters introduce, so we need to adjust
+ % for this when comparing tx to trx bits for BER calcs.
+
+ fm_states.nsym_delay = ncoeffs/Ts;
+
+ % input filter gets rid of excess noise before demodulator, as too much
+ % noise causes atan2() to jump around, e.g. -pi to pi. However this
+ % filter can cause harmonic distortion at very high SNRs, as it knocks out
+ % some of the FM signal spectra. This filter isn't really required for high
+ % SNRs > 20dB.
+
+ fc = (Bfm/2)/(FsOn2);
+ fm_states.bin = firls(ncoeffs,[0 fc*(1-0.05) fc*(1+0.05) 1],[1 1 0.01 0.01]);
+
+ % demoduator output filter to limit us to fm_max (e.g. 3kHz)
+
+ fc = fm_max/(FsOn2);
+ fm_states.bout = firls(ncoeffs,[0 0.95*fc 1.05*fc 1], [1 1 0.01 0.01]);
+endfunction
+
+
+function fm_fir_coeff_file(fm_states, filename)
+ global gt_alpha5_root;
+ global Nfilter;
+
+ f=fopen(filename,"wt");
+
+ fprintf(f,"/* Generated by fm_fir_coeff_file() Octave function in fm.m */\n\n");
+ fprintf(f,"const float bin[]={\n");
+ for m=1:length(fm_states.bin)-1
+ fprintf(f," %g,\n", fm_states.bin(m));
+ endfor
+ fprintf(f," %g\n};\n\n", fm_states.bin(length(fm_states.bin)));
+
+ fprintf(f,"const float bout[]={\n");
+ for m=1:length(fm_states.bout)-1
+ fprintf(f," %g,\n", fm_states.bout(m));
+ endfor
+ fprintf(f," %g\n};\n", fm_states.bout(length(fm_states.bout)));
+
+ fclose(f);
+endfunction
+
+
+function tx = analog_fm_mod(fm_states, mod)
+ Fs = fm_states.Fs;
+ fc = fm_states.fc; wc = 2*pi*fc/Fs;
+ fd = fm_states.fd; wd = 2*pi*fd/Fs;
+ nsam = length(mod);
+
+ if fm_states.pre_emp
+ mod = filter(fm_states.prede,1,mod);
+ mod = mod/max(mod); % AGC to set deviation
+ end
+
+ tx_phase = 0;
+ tx = zeros(1,nsam);
+
+ for i=0:nsam-1
+ w = wc + wd*mod(i+1);
+ tx_phase = tx_phase + w;
+ tx_phase = tx_phase - floor(tx_phase/(2*pi))*2*pi;
+ tx(i+1) = exp(j*tx_phase);
+ end
+endfunction
+
+
+function [rx_out rx_bb] = analog_fm_demod(fm_states, rx)
+ Fs = fm_states.Fs;
+ fc = fm_states.fc; wc = 2*pi*fc/Fs;
+ fd = fm_states.fd; wd = 2*pi*fd/Fs;
+ nsam = length(rx);
+ t = 0:(nsam-1);
+
+ rx_bb = rx .* exp(-j*wc*t); % down to complex baseband
+ rx_bb = filter(fm_states.bin,1,rx_bb);
+
+ % differentiate first, in rect domain, then find angle, this puts
+ % signal on the positive side of the real axis
+
+ rx_bb_diff = [ 1 rx_bb(2:nsam) .* conj(rx_bb(1:nsam-1))];
+ rx_out = atan2(imag(rx_bb_diff),real(rx_bb_diff));
+
+ % limit maximum phase jumps, to remove static type noise at low SNRs
+ if !fm_states.ph_dont_limit
+ rx_out(find(rx_out > wd)) = wd;
+ rx_out(find(rx_out < -wd)) = -wd;
+ end
+ rx_out *= (1/wd);
+
+ if fm_states.output_filter
+ rx_out = filter(fm_states.bout,1,rx_out);
+ end
+ if fm_states.de_emp
+ rx_out = filter(1,fm_states.prede,rx_out);
+ end
+endfunction
+
+
+function sim_out = analog_fm_test(sim_in)
+ nsam = sim_in.nsam;
+ CNdB = sim_in.CNdB;
+ verbose = sim_in.verbose;
+
+ Fs = fm_states.Fs = 96000;
+ fm_max = fm_states.fm_max = 3E3;
+ fd = fm_states.fd = 5E3;
+ fm_states.fc = 24E3;
+
+ fm_states.pre_emp = pre_emp = sim_in.pre_emp;
+ fm_states.de_emp = de_emp = sim_in.de_emp;
+ fm_states.Ts = 1;
+ fm_states.output_filter = 1;
+ fm_states = analog_fm_init(fm_states);
+ sim_out.Bfm = fm_states.Bfm;
+
+ Bfm = fm_states.Bfm;
+ m = fm_states.m; tc = fm_states.tc;
+ t = 0:(nsam-1);
+
+ fm = 1000; wm = 2*pi*fm/fm_states.Fs;
+
+ % start simulation
+
+ for ne = 1:length(CNdB)
+
+ % work out the variance we need to obtain our C/N in the bandwidth
+ % of the FM demod. The gaussian generator randn() generates noise
+ % with a bandwidth of Fs
+
+ aCNdB = CNdB(ne);
+ CN = 10^(aCNdB/10);
+ variance = Fs/(CN*Bfm);
+
+ % FM Modulator -------------------------------
+
+ mod = sin(wm*t);
+ tx = analog_fm_mod(fm_states, mod);
+
+ % Channel ---------------------------------
+
+ noise = sqrt(variance/2)*(randn(1,nsam) + j*randn(1,nsam));
+ rx = tx + noise;
+
+ % FM Demodulator
+
+ [rx_out rx_bb] = analog_fm_demod(fm_states, rx);
+
+ % notch out test tone
+
+ w = 2*pi*fm/Fs; beta = 0.99;
+ rx_notch = filter([1 -2*cos(w) 1],[1 -2*beta*cos(w) beta*beta], rx_out);
+
+ % measure power with and without test tone to determine S+N and N
+
+ settle = 1000; % filter settling time, to avoid transients
+ nsettle = nsam - settle;
+
+ sinad = (rx_out(settle:nsam) * rx_out(settle:nsam)')/nsettle;
+ nad = (rx_notch(settle:nsam) * rx_notch(settle:nsam)')/nsettle;
+
+ snr = (sinad-nad)/nad;
+ sim_out.snrdB(ne) = 10*log10(snr);
+
+ % Theory from FMTutorial.pdf, Lawrence Der, Silicon labs paper
+
+ snr_theory_dB = aCNdB + 10*log10(3*m*m*(m+1));
+ fx = 1/(2*pi*tc); W = fm_max;
+ I = (W/fx)^3/(3*((W/fx) - atan(W/fx)));
+ I_dB = 10*log10(I);
+
+ sim_out.snr_theorydB(ne) = snr_theory_dB;
+ sim_out.snr_theory_pre_dedB(ne) = snr_theory_dB + I_dB;
+
+ if verbose > 1
+ printf("modn index: %2.1f Bfm: %.0f Hz\n", m, Bfm);
+ end
+
+ if verbose > 0
+ printf("C/N: %4.1f SNR: %4.1f dB THEORY: %4.1f dB or with pre/de: %4.1f dB\n",
+ aCNdB, 10*log10(snr), snr_theory_dB, snr_theory_dB+I_dB);
+ end
+
+ if verbose > 1
+ figure(1)
+ subplot(211)
+ plot(20*log10(abs(fft(rx))))
+ title('FM Modulator Output Spectrum');
+ axis([1 length(tx) 0 100]);
+ subplot(212)
+ Rx_bb = 20*log10(abs(fft(rx_bb)));
+ plot(Rx_bb)
+ axis([1 length(tx) 0 100]);
+ title('FM Demodulator (baseband) Input Spectrum');
+
+ figure(2)
+ subplot(211)
+ plot(rx_out(settle:nsam))
+ axis([1 4000 -1 1])
+ subplot(212)
+ Rx = 20*log10(abs(fft(rx_out(settle:nsam))));
+ plot(Rx(1:10000))
+ axis([1 10000 0 100]);
+ end
+
+ end
+
+endfunction
+
+
+function run_fm_curves
+ sim_in.nsam = 96000;
+ sim_in.verbose = 1;
+ sim_in.pre_emp = 0;
+ sim_in.de_emp = 0;
+ sim_in.CNdB = -4:2:20;
+
+ sim_out = analog_fm_test(sim_in);
+
+ figure(1)
+ clf
+ plot(sim_in.CNdB, sim_out.snrdB,"r;FM Simulated;");
+ hold on;
+ plot(sim_in.CNdB, sim_out.snr_theorydB,"g;FM Theory;");
+ plot(sim_in.CNdB, sim_in.CNdB,"b; SSB Theory;");
+ hold off;
+ grid("minor");
+ xlabel("FM demod input C/N (dB)");
+ ylabel("FM demod output S/N (dB)");
+ legend("boxoff");
+
+ % C/No curves
+
+ Bfm_dB = 10*log10(sim_out.Bfm);
+ Bssb_dB = 10*log10(3000);
+
+ figure(2)
+ clf
+ plot(sim_in.CNdB + Bfm_dB, sim_out.snrdB,"r;FM Simulated;");
+ hold on;
+ plot(sim_in.CNdB + Bfm_dB, sim_out.snr_theorydB,"g;FM Theory;");
+ plot(sim_in.CNdB + Bssb_dB, sim_in.CNdB,"b; SSB Theory;");
+ hold off;
+ grid("minor");
+ xlabel("FM demod input C/No (dB)");
+ ylabel("FM demod output S/N (dB)");
+ legend("boxoff");
+
+endfunction
+
+
+function run_fm_single
+ sim_in.nsam = 96000;
+ sim_in.verbose = 2;
+ sim_in.pre_emp = 0;
+ sim_in.de_emp = 0;
+
+ sim_in.CNdB = 20;
+ sim_out = analog_fm_test(sim_in);
+end
+
+
+function fm_mod_file(file_name_out, file_name_in, CNdB)
+ fm_states.Fs = 48000;
+ fm_states.fm_max = 3E3;
+ fm_states.fd = 5E3;
+ fm_states.fc = fm_states.Fs/4;
+ fm_states.pre_emp = 0;
+ fm_states.de_emp = 0;
+ fm_states.Ts = 1;
+ fm_states.output_filter = 1;
+ fm_states = analog_fm_init(fm_states);
+
+ if nargin == 1
+ nsam = fm_states.Fs * 10;
+ t = 0:(nsam-1);
+ fm = 1000; wm = 2*pi*fm/fm_states.Fs;
+ mod = sin(wm*t);
+ else
+ fin = fopen(file_name_in,"rb");
+ mod = fread(fin,"short")';
+ mod /= 32767;
+ fclose(fin);
+ end
+ tx = analog_fm_mod(fm_states, mod);
+
+ if (nargin == 3)
+ % Optionally add some noise
+
+ CN = 10^(CNdB/10);
+ variance = fm_states.Fs/(CN*fm_states.Bfm);
+ tx += sqrt(variance)*randn(1,length(tx));
+ end
+
+ tx_out = tx*16384;
+ fout = fopen(file_name_out,"wb");
+ fwrite(fout, tx_out, "short");
+ fclose(fout);
+endfunction
+
+
+function fm_demod_file(file_name_out, file_name_in)
+ fin = fopen(file_name_in,"rb");
+ rx = fread(fin,"short")';
+ rx = rx(100000:length(rx)); % strip of wave header
+ fclose(fin);
+
+ Fs = fm_states.Fs = 48000;
+ fm_max = fm_states.fm_max = 3E3;
+ fd = fm_states.fd = 5E3;
+ fm_states.fc = 12E3;
+
+ fm_states.pre_emp = 0;
+ fm_states.de_emp = 1;
+ fm_states.Ts = 1;
+ fm_states.output_filter = 1;
+ fm_states = analog_fm_init(fm_states);
+
+ [rx_out rx_bb] = analog_fm_demod(fm_states, rx);
+
+ rx_out *= 20000;
+ fout = fopen(file_name_out,"wb");
+ fwrite(fout, rx_out, "short");
+ fclose(fout);
+
+ figure(1)
+ subplot(211)
+ plot(rx)
+ subplot(212)
+ plot(20*log10(abs(fft(rx))))
+ title('FM Dmodulator Input Spectrum');
+
+ figure(2)
+ subplot(211)
+ Rx_bb = 20*log10(abs(fft(rx_bb)));
+ plot(Rx_bb)
+ title('FM Demodulator (baseband) Input Spectrum');
+
+ subplot(212)
+ plot(20*log10(abs(fft(rx_out))))
+ title('FM Dmodulator Output Spectrum');
+
+ figure(3)
+ plot(rx_out)
+ title('FM Dmodulator Output');
+
+ % estimate SNR, C/No etc
+
+ npower_window = 1024;
+ rx_power = conv(rx.^2,ones(1,npower_window))/(npower_window);
+ rx_power_dB = 10*log10(rx_power);
+ figure;
+ subplot(211)
+ plot(rx);
+ subplot(212)
+ plot(rx_power_dB);
+ axis([1 length(rx_power) max(rx_power_dB)-9 max(rx_power_dB)+1])
+ grid("minor")
+
+ % estimate FM demod output SNR if a 1000 Hz tone is present
+
+ w = 2*pi*1000/Fs; beta = 0.99;
+ rx_notch = filter([1 -2*cos(w) 1],[1 -2*beta*cos(w) beta*beta], rx_out);
+
+ rx_out_power = conv(rx_out.^2,ones(1,npower_window))/(npower_window);
+ rx_out_power_dB = 10*log10(rx_out_power);
+ rx_notch_power = conv(rx_notch.^2,ones(1,npower_window))/(npower_window);
+ rx_notch_power_dB = 10*log10(rx_notch_power);
+ figure;
+ plot(rx_out_power_dB,'r;FM demod output power;');
+ hold on;
+ plot(rx_notch_power_dB,'b;1000 Hz notch filter output power;');
+ plot(rx_out_power_dB-rx_notch_power_dB,'g;1000 Hz tone SNR;');
+ hold off;
+ legend("boxoff");
+ ylabel('dB');
+ xlabel('Time (samples)');
+ grid("minor")
+
+endfunction
+
+
+% generate filter coeffs for C implementation of FM demod
+
+function make_coeff_file
+ fm_states.Fs = 44400;
+ fm_states.fm_max = 3E3;
+ fm_states.fd = 5E3;
+ fm_states.fc = fm_states.Fs/4;
+
+ fm_states.pre_emp = 0;
+ fm_states.de_emp = 0;
+ fm_states.Ts = 1;
+ fm_states.output_filter = 1;
+ fm_states = analog_fm_init(fm_states);
+
+ fm_fir_coeff_file(fm_states, "fm_fir_coeff.h")
+endfunction
+
+function test_fm_modulator
+ fm_states.Fs = 48000;
+ fm_states.fm_max = 3E3;
+ fm_states.fd = 5E3;
+ %fm_states.fc = fm_states.Fs/4;
+ fm_states.fc = 0;
+
+ fm_states.pre_emp = 0;
+ fm_states.de_emp = 0;
+ fm_states.Ts = 1;
+ fm_states.output_filter = 1;
+ fm_states = analog_fm_init(fm_states);
+
+ test_t = [1:(fm_states.Fs*10)];
+ test_freq1 = 2*pi*3000/fm_states.Fs;
+ test_freq2 = 2*pi*1000/fm_states.Fs;
+
+ test_sig = .5*sin(test_t*test_freq1) + .5*sin(test_t*test_freq2);
+ %test_sig = zeros(1,length(test_t));
+ %test_sig = ones(1,length(test_t));
+
+ ftsig = fopen("fm_test_sig.raw","wb");
+ fwrite(ftsig,test_sig*16384,"short");
+ fclose(ftsig);
+
+ system("../fm_test fm_test_sig.raw fm_test_out.raw");
+ ftmod = fopen("fm_test_out.raw","r");
+ test_mod_p = rot90(fread(ftmod,"short"))/16384;
+ test_mod_r = test_mod_p(1:2:length(test_mod_p));
+ test_mod_i = test_mod_p(2:2:length(test_mod_p));
+ test_mod = test_mod_r .+ i*test_mod_i;
+ fclose(ftmod);
+
+ comp_mod = analog_fm_mod(fm_states,test_sig);
+
+ figure(1)
+ comp_mod_real = real(comp_mod);
+ size(comp_mod_real)
+ size(test_mod)
+ mod_diff = zeros(1,length(test_mod));
+ mod_diff = test_mod .- comp_mod;
+ plot(test_t,real(test_mod .- comp_mod),test_t,imag(test_mod .- comp_mod));
+
+endfunction
+
+more off;
+
+%run_fm_curves
+%fm_demod_file("ssb_fm_out.raw","~/Desktop/ssb_fm.wav")
+%fm_demod_file("ssb25_fm_de.raw", "~/Desktop/ssb25db.wav")
+%run_fm_single
+%make_coeff_file
+%fm_mod_file("fm_1000.raw");
+%test_fm_modulator