diff options
Diffstat (limited to 'src/cohpsk.c')
| -rw-r--r-- | src/cohpsk.c | 1433 |
1 files changed, 1433 insertions, 0 deletions
diff --git a/src/cohpsk.c b/src/cohpsk.c new file mode 100644 index 0000000..b7ce633 --- /dev/null +++ b/src/cohpsk.c @@ -0,0 +1,1433 @@ +/*---------------------------------------------------------------------------*\ + + FILE........: cohpsk.c + AUTHOR......: David Rowe + DATE CREATED: March 2015 + + Functions that implement a coherent PSK FDM modem. + +\*---------------------------------------------------------------------------*/ + +/* + Copyright (C) 2015 David Rowe + + All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License version 2.1, as + published by the Free Software Foundation. This program is + distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. +*/ + +/*---------------------------------------------------------------------------*\ + + INCLUDES + +\*---------------------------------------------------------------------------*/ + +#include <assert.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <math.h> + +#include "codec2_cohpsk.h" +#include "cohpsk_defs.h" +#include "cohpsk_internal.h" +#include "fdmdv_internal.h" +#include "pilots_coh.h" +#include "comp_prim.h" +#include "kiss_fft.h" +#include "linreg.h" +#include "rn_coh.h" +#include "test_bits_coh.h" + +#include "debug_alloc.h" + +static COMP qpsk_mod[] = { + { 1.0, 0.0}, + { 0.0, 1.0}, + { 0.0,-1.0}, + {-1.0, 0.0} +}; + +static int sampling_points[] = {0, 1, 6, 7}; + +void corr_with_pilots(float *corr_out, float *mag_out, struct COHPSK *coh, int t, float f_fine); +void update_ct_symb_buf(COMP ct_symb_buf[][COHPSK_NC*COHPSK_ND], COMP ch_symb[][COHPSK_NC*COHPSK_ND]); + +/*---------------------------------------------------------------------------*\ + + FUNCTIONS + +\*---------------------------------------------------------------------------*/ + + +/*--------------------------------------------------------------------------* \ + + FUNCTION....: cohpsk_create + AUTHOR......: David Rowe + DATE CREATED: Marcg 2015 + + Create and initialise an instance of the modem. Returns a pointer + to the modem states or NULL on failure. One set of states is + sufficient for a full duplex modem. + +\*---------------------------------------------------------------------------*/ + +struct COHPSK *cohpsk_create(void) +{ + struct COHPSK *coh; + struct FDMDV *fdmdv; + int r,c,p,i; + float freq_hz, result; + float tau = 2.0f * M_PI; + + assert(COHPSK_NC == PILOTS_NC); + assert(COHPSK_NOM_SAMPLES_PER_FRAME == (COHPSK_M*NSYMROWPILOT)); + assert(COHPSK_MAX_SAMPLES_PER_FRAME == (COHPSK_M*NSYMROWPILOT+COHPSK_M/P)); + assert(COHPSK_NSYM == NSYM); /* as we want to use the tx sym mem on fdmdv */ + assert(COHPSK_NT == NT); + + coh = (struct COHPSK*)MALLOC(sizeof(struct COHPSK)); + if (coh == NULL) + return NULL; + + /* set up buffer of tx pilot symbols for coh demod on rx */ + + for(r=0; r<2*NPILOTSFRAME; ) { + for(p=0; p<NPILOTSFRAME; r++, p++) { + for(c=0; c<COHPSK_NC; c++) { + coh->pilot2[r][c] = pilots_coh[p][c]; + } + } + } + + /* Clear symbol buffer memory */ + + for (r=0; r<NCT_SYMB_BUF; r++) { + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + coh->ct_symb_buf[r][c].real = 0.0; + coh->ct_symb_buf[r][c].imag = 0.0; + } + } + + coh->ff_phase.real = 1.0; coh->ff_phase.imag = 0.0; + coh->sync = 0; + coh->frame = 0; + coh->ratio = 0.0; + coh->nin = COHPSK_M; + + /* clear sync window buffer */ + + for (i=0; i<NSW*NSYMROWPILOT*COHPSK_M; i++) { + coh->ch_fdm_frame_buf[i].real = 0.0; + coh->ch_fdm_frame_buf[i].imag = 0.0; + } + + /* set up fdmdv states so we can use those modem functions */ + + /* + * NC*ND -1 Realize that the function creates a sync carrier (+1), + * or one more carrier than asked for. We ignore any initialization + * inside of fdmdv and take care of that here, using the whole + * NC*ND number of carriers to be used in cohpsk. + */ + fdmdv = fdmdv_create((COHPSK_NC*COHPSK_ND) - 1); + + fdmdv->fsep = COHPSK_RS*(1.0 + COHPSK_EXCESS_BW); + + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + fdmdv->phase_tx[c].real = 1.0; + fdmdv->phase_tx[c].imag = 0.0; + + /* note non-linear carrier spacing to help PAPR, works v well in conjunction with CLIP */ + + freq_hz = fdmdv->fsep*( -(COHPSK_NC*COHPSK_ND)/2 - 0.5f + powf(c + 1.0f, 0.98f) ); + result = tau * freq_hz/COHPSK_FS; + + fdmdv->freq[c].real = cosf(result); + fdmdv->freq[c].imag = sinf(result); + fdmdv->freq_pol[c] = result; + + //printf("c: %d %f %f\n",c,freq_hz,fdmdv->freq_pol[c]); + for(i=0; i<COHPSK_NFILTER; i++) { + coh->rx_filter_memory[c][i].real = 0.0; + coh->rx_filter_memory[c][i].imag = 0.0; + } + + /* optional per-carrier amplitude weighting for testing */ + + coh->carrier_ampl[c] = 1.0; + } + + result = tau * FDMDV_FCENTRE/COHPSK_FS; + fdmdv->fbb_rect.real = cosf(result); + fdmdv->fbb_rect.imag = sinf(result); + fdmdv->fbb_pol = result; + + coh->fdmdv = fdmdv; + + coh->sig_rms = coh->noise_rms = 0.0; + + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + for (r=0; r<NSYMROW; r++) { + coh->rx_symb[r][c].real = 0.0; + coh->rx_symb[r][c].imag = 0.0; + } + } + + coh->verbose = 0; + + /* disable optional logging by default */ + + coh->rx_baseband_log = NULL; + coh->rx_baseband_log_col_index = 0; + coh->rx_filt_log = NULL; + coh->rx_filt_log_col_index = 0; + coh->ch_symb_log = NULL; + coh->ch_symb_log_r = 0; + coh->rx_timing_log = NULL; + coh->rx_timing_log_index = 0; + + /* test frames */ + + coh->ptest_bits_coh_tx = coh->ptest_bits_coh_rx[0] = coh->ptest_bits_coh_rx[1] = (int*)test_bits_coh; + coh->ptest_bits_coh_end = (int*)test_bits_coh + sizeof(test_bits_coh)/sizeof(int); + + return coh; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_destroy + AUTHOR......: David Rowe + DATE CREATED: March 2015 + + Destroy an instance of the modem. + +\*---------------------------------------------------------------------------*/ + +void cohpsk_destroy(struct COHPSK *coh) +{ + fdmdv_destroy(coh->fdmdv); + assert(coh != NULL); + FREE(coh); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: bits_to_qpsk_symbols() + AUTHOR......: David Rowe + DATE CREATED: March 2015 + + Rate Rs modulator. Maps bits to parallel DQPSK symbols and inserts pilot symbols. + +\*---------------------------------------------------------------------------*/ + +void bits_to_qpsk_symbols(COMP tx_symb[][COHPSK_NC*COHPSK_ND], int tx_bits[], int nbits) +{ + int i, r, c, p_r, data_r, d, diversity; + short bits; + + /* check allowed number of bits supplied matches number of QPSK + symbols in the frame */ + + assert( (NSYMROW*COHPSK_NC*2 == nbits) || (NSYMROW*COHPSK_NC*2*COHPSK_ND == nbits)); + + /* if we input twice as many bits we don't do diversity */ + + if (NSYMROW*COHPSK_NC*2 == nbits) { + diversity = 1; /* diversity mode */ + } + else { + diversity = 2; /* twice as many bits, non diversity mode */ + } + + /* + Insert two rows of Nc pilots at beginning of data frame. + + Organise QPSK symbols into a NSYMBROWS rows by PILOTS_NC*ND cols matrix, + each column is a carrier, time flows down the cols...... + + Note: the "& 0x1" prevents and non binary tx_bits[] screwing up + our lives. Call me defensive. + + sqrtf(ND) term ensures the same energy/symbol for different + diversity factors. + */ + + r = 0; + for(p_r=0; p_r<2; p_r++) { + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + tx_symb[r][c].real = pilots_coh[p_r][c % COHPSK_NC]/sqrtf(COHPSK_ND); + tx_symb[r][c].imag = 0.0; + } + r++; + } + for(data_r=0; data_r<NSYMROW; data_r++, r++) { + for(c=0; c<COHPSK_NC*diversity; c++) { + i = c*NSYMROW + data_r; + bits = (tx_bits[2*i]&0x1)<<1 | (tx_bits[2*i+1]&0x1); + tx_symb[r][c] = fcmult(1.0/sqrtf(COHPSK_ND),qpsk_mod[bits]); + } + } + + assert(p_r == NPILOTSFRAME); + assert(r == NSYMROWPILOT); + + /* if in diversity mode, copy symbols to upper carriers */ + + for(d=1; d<1+COHPSK_ND-diversity; d++) { + for(r=0; r<NSYMROWPILOT; r++) { + for(c=0; c<COHPSK_NC; c++) { + tx_symb[r][c+COHPSK_NC*d] = tx_symb[r][c]; + } + } + } +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: qpsk_symbols_to_bits() + AUTHOR......: David Rowe + DATE CREATED: March 2015 + + Rate Rs demodulator. Extract pilot symbols and estimate amplitude and phase + of each carrier. Correct phase of data symbols and convert to bits. + + Further improvement. In channels with slowly changing phase we + could optionally use pilots from several past and future symbols. + +\*---------------------------------------------------------------------------*/ + +void qpsk_symbols_to_bits(struct COHPSK *coh, float rx_bits[], COMP ct_symb_buf[][COHPSK_NC*COHPSK_ND]) +{ + int p, r, c, i, pc, d, n; + float x[NPILOTSFRAME+2], x1; + COMP y[NPILOTSFRAME+2], yfit; + COMP rx_symb_linear[NSYMROW*COHPSK_NC*COHPSK_ND]; + COMP m, b; + COMP __attribute__((unused)) corr, rot, pi_on_4, phi_rect, div_symb; + float mag, __attribute__((unused)) phi_, __attribute__((unused)) amp_; + float sum_x, sum_xx, noise_var; + float spi_4 = M_PI / 4.0f; + COMP s; + + pi_on_4.real = cosf(spi_4); pi_on_4.imag = sinf(spi_4); + + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + + /* Set up lin reg model and interpolate phase. Works better than average for channels with + quickly changing phase, like HF. */ + + for(p=0; p<NPILOTSFRAME+2; p++) { + x[p] = sampling_points[p]; + pc = c % COHPSK_NC; + y[p] = fcmult(coh->pilot2[p][pc], ct_symb_buf[sampling_points[p]][c]); + } + + linreg(&m, &b, x, y, NPILOTSFRAME+2); + for(r=0; r<NSYMROW; r++) { + x1 = (float)(r+NPILOTSFRAME); + yfit = cadd(fcmult(x1,m),b); + coh->phi_[r][c] = atan2f(yfit.imag, yfit.real); + } + + /* amplitude estimation */ + + mag = 0.0f; + for(p=0; p<NPILOTSFRAME+2; p++) { + mag += cabsolute(ct_symb_buf[sampling_points[p]][c]); + } + amp_ = mag/(NPILOTSFRAME+2); + for(r=0; r<NSYMROW; r++) { + coh->amp_[r][c] = amp_; + } + } + + /* now correct phase of data symbols */ + + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + for (r=0; r<NSYMROW; r++) { + phi_rect.real = cosf(coh->phi_[r][c]); phi_rect.imag = -sinf(coh->phi_[r][c]); + coh->rx_symb[r][c] = cmult(ct_symb_buf[NPILOTSFRAME + r][c], phi_rect); + i = c*NSYMROW + r; + rx_symb_linear[i] = coh->rx_symb[r][c]; + } + } + + /* and finally optional diversity combination, note output is soft decn a "1" is < 0 */ + + for(c=0; c<COHPSK_NC; c++) { + for(r=0; r<NSYMROW; r++) { + div_symb = coh->rx_symb[r][c]; + for (d=1; d<COHPSK_ND; d++) { + div_symb = cadd(div_symb, coh->rx_symb[r][c + COHPSK_NC*d]); + } + rot = cmult(div_symb, pi_on_4); + i = c*NSYMROW + r; + rx_bits[2*i+1] = rot.real; + rx_bits[2*i] = rot.imag; + + /* demodulate bits from upper and lower carriers separately for test purposes */ + + assert(COHPSK_ND == 2); + + i = c*NSYMROW + r; + rot = cmult(coh->rx_symb[r][c], pi_on_4); + coh->rx_bits_lower[2*i+1] = rot.real; + coh->rx_bits_lower[2*i] = rot.imag; + rot = cmult(coh->rx_symb[r][c + COHPSK_NC], pi_on_4); + coh->rx_bits_upper[2*i+1] = rot.real; + coh->rx_bits_upper[2*i] = rot.imag; + } + } + + + /* estimate RMS signal and noise */ + + mag = 0.0f; + for(i=0; i<NSYMROW*COHPSK_NC*COHPSK_ND; i++) + mag += cabsolute(rx_symb_linear[i]); + coh->sig_rms = mag/(NSYMROW*COHPSK_NC*COHPSK_ND); + + sum_x = 0.0f; + sum_xx = 0.0f; + n = 0; + for (i=0; i<NSYMROW*COHPSK_NC*COHPSK_ND; i++) { + s = rx_symb_linear[i]; + if (fabsf(s.real) > coh->sig_rms) { + sum_x += s.imag; + sum_xx += s.imag*s.imag; + n++; + } + } + + noise_var = 0.0f; + if (n > 1) { + noise_var = (n*sum_xx - sum_x*sum_x)/(n*(n-1)); + } + coh->noise_rms = sqrtf(noise_var); + +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: tx_filter_and_upconvert_coh() + AUTHOR......: David Rowe + DATE CREATED: May 2015 + + Given NC symbols construct M samples (1 symbol) of NC filtered + and upconverted symbols. + + TODO: work out a way to merge with fdmdv version, e.g. run time define M/NSYM, + and run unittests on fdmdv and cohpsk modem afterwards. + +\*---------------------------------------------------------------------------*/ + +void tx_filter_and_upconvert_coh(COMP tx_fdm[], int Nc, const COMP tx_symbols[], + COMP tx_filter_memory[][COHPSK_NSYM], + COMP phase_tx[], COMP freq[], + COMP *fbb_phase, COMP fbb_rect) +{ + int c; + int i,j,k; + float acc; + COMP gain; + COMP tx_baseband; + COMP two = {2.0, 0.0}; + float mag; + + gain.real = sqrtf(2.0)/2.0; + gain.imag = 0.0; + + for(i=0; i<COHPSK_M; i++) { + tx_fdm[i].real = 0.0; + tx_fdm[i].imag = 0.0; + } + + for(c=0; c<Nc; c++) + tx_filter_memory[c][COHPSK_NSYM-1] = cmult(tx_symbols[c], gain); + + /* + tx filter each symbol, generate M filtered output samples for + each symbol, which we then freq shift and sum with other + carriers. Efficient polyphase filter techniques used as + tx_filter_memory is sparse + */ + + for(c=0; c<Nc; c++) { + for(i=0; i<COHPSK_M; i++) { + + /* filter real sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=COHPSK_M-i-1; j<COHPSK_NSYM; j++,k+=COHPSK_M) + acc += COHPSK_M * tx_filter_memory[c][j].real * gt_alpha5_root_coh[k]; + tx_baseband.real = acc; + + /* filter imag sample of symbol for carrier c */ + + acc = 0.0; + for(j=0,k=COHPSK_M-i-1; j<COHPSK_NSYM; j++,k+=COHPSK_M) + acc += COHPSK_M * tx_filter_memory[c][j].imag * gt_alpha5_root_coh[k]; + tx_baseband.imag = acc; + //printf("%d %d %f %f\n", c, i, tx_baseband.real, tx_baseband.imag); + + /* freq shift and sum */ + + phase_tx[c] = cmult(phase_tx[c], freq[c]); + tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c])); + //printf("%d %d %f %f\n", c, i, phase_tx[c].real, phase_tx[c].imag); + } + //exit(0); + } + + /* shift whole thing up to carrier freq */ + + for (i=0; i<COHPSK_M; i++) { + *fbb_phase = cmult(*fbb_phase, fbb_rect); + tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase); + } + + /* + Scale such that total Carrier power C of real(tx_fdm) = Nc. This + excludes the power of the pilot tone. + We return the complex (single sided) signal to make frequency + shifting for the purpose of testing easier + */ + + for (i=0; i<COHPSK_M; i++) + tx_fdm[i] = cmult(two, tx_fdm[i]); + + /* normalise digital oscillators as the magnitude can drift over time */ + + for (c=0; c<Nc; c++) { + mag = cabsolute(phase_tx[c]); + phase_tx[c].real /= mag; + phase_tx[c].imag /= mag; + } + + mag = cabsolute(*fbb_phase); + fbb_phase->real /= mag; + fbb_phase->imag /= mag; + + /* shift memory, inserting zeros at end */ + + for(i=0; i<COHPSK_NSYM-1; i++) + for(c=0; c<Nc; c++) + tx_filter_memory[c][i] = tx_filter_memory[c][i+1]; + + for(c=0; c<Nc; c++) { + tx_filter_memory[c][COHPSK_NSYM-1].real = 0.0; + tx_filter_memory[c][COHPSK_NSYM-1].imag = 0.0; + } +} + + + +void corr_with_pilots(float *corr_out, float *mag_out, struct COHPSK *coh, int t, float f_fine) +{ + COMP acorr, f_fine_rect[NPILOTSFRAME+2], f_corr; + float mag, corr, result; + float tau = 2.0f * M_PI; + int c, p, pc; + + for (p=0; p<NPILOTSFRAME+2; p++) { + result = f_fine * tau * (sampling_points[p]+1.0) / COHPSK_RS; + f_fine_rect[p].real = cosf(result); + f_fine_rect[p].imag = sinf(result); + } + + corr = 0.0; mag = 1E-12; + for (c=0; c<COHPSK_NC*COHPSK_ND; c++) { + acorr.real = 0.0f; acorr.imag = 0.0f; pc = c % COHPSK_NC; + for (p=0; p<NPILOTSFRAME+2; p++) { + f_corr = cmult(f_fine_rect[p], coh->ct_symb_buf[t+sampling_points[p]][c]); + acorr = cadd(acorr, fcmult(coh->pilot2[p][pc], f_corr)); + mag += cabsolute(f_corr); + } + corr += cabsolute(acorr); + } + + *corr_out = corr; + *mag_out = mag; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: frame_sync_fine_freq_est() + AUTHOR......: David Rowe + DATE CREATED: April 2015 + + Returns an estimate of frame sync (coarse timing) offset and fine + frequency offset, advances to next sync state if we have a reliable + match for frame sync. + +\*---------------------------------------------------------------------------*/ + +void frame_sync_fine_freq_est(struct COHPSK *coh, COMP ch_symb[][COHPSK_NC*COHPSK_ND], int sync, int *next_sync) +{ + int t; + float f_fine, mag, max_corr, max_mag, corr, result; + float tau = 2.0f * M_PI; + + update_ct_symb_buf(coh->ct_symb_buf, ch_symb); + + /* sample pilots at start of this frame and start of next frame */ + + if (sync == 0) { + + /* sample correlation over 2D grid of time and fine freq points */ + + max_corr = 0.0; max_mag = 1E-12; + for (f_fine=-20; f_fine<=20; f_fine+=0.25) { + for (t=0; t<NSYMROWPILOT; t++) { + corr_with_pilots(&corr, &mag, coh, t, f_fine); + //printf(" f: %f t: %d corr: %f mag: %f\n", f_fine, t, corr, mag); + if (corr >= max_corr) { + max_corr = corr; + max_mag = mag; + coh->ct = t; + coh->f_fine_est = f_fine; + } + } + } + + + result = coh->f_fine_est * tau / COHPSK_RS; + + coh->ff_rect.real = cosf(result); + coh->ff_rect.imag = -sinf(result); + if (coh->verbose) + fprintf(stderr, " [%d] fine freq f: %6.2f max_ratio: %f ct: %d\n", coh->frame, (double)coh->f_fine_est, (double)max_corr/(double)max_mag, coh->ct); + + if (max_corr/max_mag > 0.9) { + if (coh->verbose) + fprintf(stderr, " [%d] encouraging sync word!\n", coh->frame); + coh->sync_timer = 0; + *next_sync = 1; + } + else { + *next_sync = 0; + } + coh->ratio = max_corr/max_mag; + } +} + + +void update_ct_symb_buf(COMP ct_symb_buf[][COHPSK_NC*COHPSK_ND], COMP ch_symb[][COHPSK_NC*COHPSK_ND]) +{ + int r, c, i; + + /* update memory in symbol buffer */ + + for(r=0; r<NCT_SYMB_BUF-NSYMROWPILOT; r++) { + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) + ct_symb_buf[r][c] = ct_symb_buf[r+NSYMROWPILOT][c]; + } + + for(r=NCT_SYMB_BUF-NSYMROWPILOT, i=0; r<NCT_SYMB_BUF; r++, i++) { + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) + ct_symb_buf[r][c] = ch_symb[i][c]; + } +} + + +int sync_state_machine(struct COHPSK *coh, int sync, int next_sync) +{ + float corr, mag; + + if (sync == 1) { + + /* check that sync is still good, fall out of sync on consecutive bad frames */ + + corr_with_pilots(&corr, &mag, coh, coh->ct, coh->f_fine_est); + coh->ratio = fabsf(corr)/mag; + + // printf("%f\n", cabsolute(corr)/mag); + + if (fabsf(corr)/mag < 0.8) + coh->sync_timer++; + else + coh->sync_timer = 0; + + if (coh->sync_timer == 10) { + if (coh->verbose) + fprintf(stderr," [%d] lost sync ....\n", coh->frame); + next_sync = 0; + } + } + + sync = next_sync; + + return sync; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_mod() + AUTHOR......: David Rowe + DATE CREATED: 5/4/2015 + + COHPSK modulator, take a frame of COHPSK_BITS_PER_FRAME or + 2*COHPSK_BITS_PER_FRAME bits and generates a frame of + COHPSK_NOM_SAMPLES_PER_FRAME modulated symbols. + + if nbits == COHPSK_BITS_PER_FRAME, diveristy mode is used, if nbits + == 2*COHPSK_BITS_PER_FRAME diversity mode is not used. + + The output signal is complex to support single sided frequency + shifting, for example when testing frequency offsets in channel + simulation. + +\*---------------------------------------------------------------------------*/ + +void cohpsk_mod(struct COHPSK *coh, COMP tx_fdm[], int tx_bits[], int nbits) +{ + struct FDMDV *fdmdv = coh->fdmdv; + COMP tx_symb[NSYMROWPILOT][COHPSK_NC*COHPSK_ND]; + COMP tx_onesym[COHPSK_NC*COHPSK_ND]; + int r,c; + + bits_to_qpsk_symbols(tx_symb, tx_bits, nbits); + + for(r=0; r<NSYMROWPILOT; r++) { + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) + tx_onesym[c] = fcmult(coh->carrier_ampl[c], tx_symb[r][c]); + tx_filter_and_upconvert_coh(&tx_fdm[r*COHPSK_M], COHPSK_NC*COHPSK_ND , tx_onesym, fdmdv->tx_filter_memory, + fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect); + } +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_clip() + AUTHOR......: David Rowe + DATE CREATED: May 2015 + + Hard clips a complex signal magnitude (Hilbert Clipping) to improve PAPR. + +\*---------------------------------------------------------------------------*/ + +void cohpsk_clip(COMP tx_fdm[], float clip_thresh, int n) +{ + COMP sam; + float mag; + int i; + + for(i=0; i<n; i++) { + sam = tx_fdm[i]; + mag = cabsolute(sam); + if (mag > clip_thresh) { + sam = fcmult(clip_thresh/mag, sam); + } + tx_fdm[i] = sam; + } + } + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdm_downconvert_coh + AUTHOR......: David Rowe + DATE CREATED: May 2015 + + Frequency shift each modem carrier down to NC baseband signals. + + TODO: try to combine with fdmdv version, carefully re-test fdmdv modem. + +\*---------------------------------------------------------------------------*/ + +void fdm_downconvert_coh(COMP rx_baseband[][COHPSK_M+COHPSK_M/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin) +{ + int i,c; + float mag; + + /* maximum number of input samples to demod */ + + assert(nin <= (COHPSK_M+COHPSK_M/P)); + + /* downconvert */ + + for (c=0; c<Nc; c++) + for (i=0; i<nin; i++) { + phase_rx[c] = cmult(phase_rx[c], freq[c]); + rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c])); + } + + /* normalise digital oscilators as the magnitude can drift over time */ + + for (c=0; c<Nc; c++) { + mag = cabsolute(phase_rx[c]); + phase_rx[c].real /= mag; + phase_rx[c].imag /= mag; + } +} + +/* Determine if we can use vector ops below. */ +#if __GNUC__ > 4 || \ + (__GNUC__ == 4 && (__GNUC_MINOR__ > 6 || \ + (__GNUC_MINOR__ == 6 && \ + __GNUC_PATCHLEVEL__ > 0))) +#define USE_VECTOR_OPS 1 +#elif __clang_major__ > 3 || \ + (__clang_minor__ == 3 && (__clang_minor__ > 7 || \ + (__clang_minor__ == 7 && \ + __clang_patchlevel__ > 0))) +#define USE_VECTOR_OPS 1 +#endif + +#if USE_VECTOR_OPS + +#ifdef __ARM_NEON +#include "arm_neon.h" + +typedef float32x4_t float4; +#else +/* Vector of 4 floating point numbers for use by the below function */ +typedef float float4 __attribute__ ((vector_size (16))); +#endif // __ARM_NEON + +#endif /* USE_VECTOR_OPS */ + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: rx_filter_coh() + AUTHOR......: David Rowe + DATE CREATED: May 2015 + + cohpsk version of fdmdv.c rx_filter function. + + TODO: see if we can merge the two! Will require re-testing of fdmdv modem. + +\*---------------------------------------------------------------------------*/ + +inline extern void rx_filter_coh(COMP rx_filt[COHPSK_NC*COHPSK_ND][P+1], int Nc, COMP rx_baseband[COHPSK_NC*COHPSK_ND][COHPSK_M+COHPSK_M/P], COMP rx_filter_memory[COHPSK_NC*COHPSK_ND][COHPSK_NFILTER], int nin) +{ + int c,i,j,k,l; + int n=COHPSK_M/P; + + /* rx filter each symbol, generate P filtered output samples for + each symbol. Note we keep filter memory at rate M, it's just + the filter output at rate P */ + + for(i=0, j=0; i<nin; i+=n,j++) + { + + /* latest input sample */ + + for(c=0; c<Nc; c++) + { + rx_filt[c][j].real = 0.0; + rx_filt[c][j].imag = 0.0; + + /* + This call is equivalent to the code below: + + for(k=COHPSK_NFILTER-n,l=i; k<COHPSK_NFILTER; k++,l++) + { + rx_filter_memory[c][k] = rx_baseband[c][l]; + } + */ + memcpy( + &rx_filter_memory[c][COHPSK_NFILTER-n], + &rx_baseband[c][i], + sizeof(COMP)*n); + + /* convolution (filtering) */ + +#if USE_VECTOR_OPS + /* assumes COHPSK_NFILTER is divisible by 2 */ + +#ifdef __ARM_NEON + float4 resultVec = vdupq_n_f32(0); +#else + float4 resultVec = {0, 0, 0, 0}; +#endif // __ARM_NEON + + for(k=0, l=0; k<COHPSK_NFILTER; k += 2, l += 4) + { +#ifdef __ARM_NEON + // Fetch gt_alpha5_root_coh and place it into a vector for later use. + // First half at index k, second half at index k + 1. + float4 alpha5Vec = vld1q_f32((const float32_t*)>_alpha5_root_coh_neon[l]); + + // Load two COMP elements (each containing two floats) into 4 element vector. + float4 filterMemVec = vld1q_f32((const float32_t *)&rx_filter_memory[c][k]); + + // Multiply each element of filterMemVec by alpha5Vec from above and add to the + // running total in resultVec. Odd indices are reals, even imag. + resultVec = vmlaq_f32(resultVec, alpha5Vec, filterMemVec); +#else + // Fetch gt_alpha5_root_coh and place it into a vector for later use. + // First half at index k, second half at index k + 1. + float4 alpha5Vec = { + gt_alpha5_root_coh_neon[l], gt_alpha5_root_coh_neon[l + 1], gt_alpha5_root_coh_neon[l + 2], gt_alpha5_root_coh_neon[l + 3], + }; + + // Load two COMP elements (each containing two floats) into 4 element vector. + float4 filterMemVec = { + rx_filter_memory[c][k].real, rx_filter_memory[c][k].imag, rx_filter_memory[c][k + 1].real, rx_filter_memory[c][k + 1].imag, + }; + + // Multiply each element of filterMemVec by alpha5Vec from above and add to the + // running total in resultVec. Odd indices are reals, even imag. + resultVec += alpha5Vec * filterMemVec; + +#endif // __ARM_NEON + } + + // Add total from resultVec to rx_filt. + rx_filt[c][j].real += resultVec[0] + resultVec[2]; + rx_filt[c][j].imag += resultVec[1] + resultVec[3]; +#else + for(k=0; k<COHPSK_NFILTER; k++) + { + /* + Equivalent to this code: + + rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root_coh[k], rx_filter_memory[c][k])); + */ + rx_filt[c][j].real += gt_alpha5_root_coh[k] * rx_filter_memory[c][k].real; + rx_filt[c][j].imag += gt_alpha5_root_coh[k] * rx_filter_memory[c][k].imag; + } +#endif /* USE_VECTOR_OPS */ + + /* + make room for next input sample. + + The below call is equivalent to this code: + + for(k=0,l=n; k<COHPSK_NFILTER-n; k++,l++) + { + rx_filter_memory[c][k] = rx_filter_memory[c][l]; + } + */ + memmove( + &rx_filter_memory[c][0], + &rx_filter_memory[c][n], + sizeof(COMP)*(COHPSK_NFILTER-n)); + } + } + + assert(j <= (P+1)); /* check for any over runs */ +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: fdmdv_freq_shift_coh() + AUTHOR......: David Rowe + DATE CREATED: May 2015 + + Frequency shift modem signal. The use of complex input and output allows + single sided frequency shifting (no images). + +\*---------------------------------------------------------------------------*/ + +void fdmdv_freq_shift_coh(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff, float Fs, + COMP *foff_phase_rect, int nin) +{ + COMP foff_rect; + float mag; + float tau = 2.0f * M_PI; + float result = tau * foff/Fs; + int i; + + foff_rect.real = cosf(result); + foff_rect.imag = sinf(result); + for(i=0; i<nin; i++) { + *foff_phase_rect = cmult(*foff_phase_rect, foff_rect); + rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect); + } + + /* normalise digital oscillator as the magnitude can drift over time */ + + mag = cabsolute(*foff_phase_rect); + foff_phase_rect->real /= mag; + foff_phase_rect->imag /= mag; +} + + +void rate_Fs_rx_processing(struct COHPSK *coh, COMP ch_symb[][COHPSK_NC*COHPSK_ND], COMP ch_fdm_frame[], float *f_est, int nsymb, int nin, int freq_track) +{ + struct FDMDV *fdmdv = coh->fdmdv; + int r, c, i, ch_fdm_frame_index; + COMP rx_fdm_frame_bb[COHPSK_M+COHPSK_M/P]; + COMP rx_baseband[COHPSK_NC*COHPSK_ND][COHPSK_M+COHPSK_M/P]; + COMP rx_filt[COHPSK_NC*COHPSK_ND][P+1]; + float env[NT*P], rx_timing; + COMP rx_onesym[COHPSK_NC*COHPSK_ND]; + float beta, g; + COMP adiff, amod_strip, mod_strip; + + ch_fdm_frame_index = 0; + rx_timing = 0; + + for (r=0; r<nsymb; r++) { + fdmdv_freq_shift_coh(rx_fdm_frame_bb, &ch_fdm_frame[ch_fdm_frame_index], -(*f_est), COHPSK_FS, &fdmdv->fbb_phase_rx, nin); + ch_fdm_frame_index += nin; + fdm_downconvert_coh(rx_baseband, COHPSK_NC*COHPSK_ND, rx_fdm_frame_bb, fdmdv->phase_rx, fdmdv->freq, nin); + rx_filter_coh(rx_filt, COHPSK_NC*COHPSK_ND, rx_baseband, coh->rx_filter_memory, nin); + rx_timing = rx_est_timing(rx_onesym, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, nin, COHPSK_M); + + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + ch_symb[r][c] = rx_onesym[c]; + } + + /* freq tracking, see test_ftrack.m for unit test. Placed in + this function as it needs to work on a symbol by symbol + abasis rather than frame by frame. This means the control + loop operates at a sample rate of Rs = 50Hz for say 1 Hz/s + drift. */ + + if (freq_track) { + beta = 0.005; + g = 0.2; + + /* combine difference on phase from last symbol over Nc carriers */ + + mod_strip.real = 0.0; mod_strip.imag = 0.0; + for(c=0; c<fdmdv->Nc+1; c++) { + //printf("rx_onesym[%d] %f %f prev_rx_symbols[%d] %f %f\n", c, rx_onesym[c].real, rx_onesym[c].imag, + // fdmdv->prev_rx_symbols[c].real, fdmdv->prev_rx_symbols[c].imag); + adiff = cmult(rx_onesym[c], cconj(fdmdv->prev_rx_symbols[c])); + fdmdv->prev_rx_symbols[c] = rx_onesym[c]; + + /* 4th power strips QPSK modulation, by multiplying phase by 4 + Using the abs value of the real coord was found to help + non-linear issues when noise power was large. */ + + amod_strip = cmult(adiff, adiff); + amod_strip = cmult(amod_strip, amod_strip); + amod_strip.real = fabsf(amod_strip.real); + mod_strip = cadd(mod_strip, amod_strip); + } + //printf("modstrip: %f %f\n", mod_strip.real, mod_strip.imag); + + /* loop filter made up of 1st order IIR plus integrator. Integerator + was found to be reqd */ + + fdmdv->foff_filt = (1.0f-beta)*fdmdv->foff_filt + beta*atan2f(mod_strip.imag, mod_strip.real); + //printf("foff_filt: %f angle: %f\n", fdmdv->foff_filt, atan2f(mod_strip.imag, mod_strip.real)); + *f_est += g*fdmdv->foff_filt; + } + + /* Optional logging used for testing against Octave version */ + + if (coh->rx_baseband_log) { + assert(nin <= (COHPSK_M+COHPSK_M/P)); + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + for(i=0; i<nin; i++) { + coh->rx_baseband_log[c*coh->rx_baseband_log_col_sz + coh->rx_baseband_log_col_index + i] = rx_baseband[c][i]; + } + } + coh->rx_baseband_log_col_index += nin; + assert(coh->rx_baseband_log_col_index <= coh->rx_baseband_log_col_sz); + } + + if (coh->rx_filt_log) { + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + for(i=0; i<nin/(COHPSK_M/P); i++) { + coh->rx_filt_log[c*coh->rx_filt_log_col_sz + coh->rx_filt_log_col_index + i] = rx_filt[c][i]; + } + } + coh->rx_filt_log_col_index += nin/(COHPSK_M/P); + } + + if (coh->ch_symb_log) { + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) { + coh->ch_symb_log[coh->ch_symb_log_r*COHPSK_NC*COHPSK_ND + c] = ch_symb[r][c]; + } + coh->ch_symb_log_r++; + } + + if (coh->rx_timing_log) { + coh->rx_timing_log[coh->rx_timing_log_index] = rx_timing; + coh->rx_timing_log_index++; + //printf("rx_timing_log_index: %d\n", coh->rx_timing_log_index); + } + + /* we only allow a timing shift on one symbol per frame */ + + if (nin != COHPSK_M) + nin = COHPSK_M; + } + + coh->rx_timing = rx_timing; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_demod() + AUTHOR......: David Rowe + DATE CREATED: 5/4/2015 + + COHPSK demodulator, takes an array of (nominally) nin_frame = + COHPSK_NOM_SAMPLES_PER_FRAME modulated samples, returns an array of + COHPSK_BITS_PER_FRAME bits. + + The input signal is complex to support single sided frequency shifting + before the demod input (e.g. click to tune feature). + +\*---------------------------------------------------------------------------*/ + +void cohpsk_demod(struct COHPSK *coh, float rx_bits[], int *sync_good, COMP rx_fdm[], int *nin_frame) +{ + COMP ch_symb[NSW*NSYMROWPILOT][COHPSK_NC*COHPSK_ND]; + int i, j, sync, anext_sync, next_sync, nin, r, c; + float max_ratio, f_est; + + assert(*nin_frame <= COHPSK_MAX_SAMPLES_PER_FRAME); + + next_sync = sync = coh->sync; + + for (i=0; i<NSW*NSYMROWPILOT*COHPSK_M-*nin_frame; i++) + coh->ch_fdm_frame_buf[i] = coh->ch_fdm_frame_buf[i+*nin_frame]; + //printf("nin_frame: %d i: %d i+nin_frame: %d\n", *nin_frame, i, i+*nin_frame); + for (j=0; i<NSW*NSYMROWPILOT*COHPSK_M; i++,j++) + coh->ch_fdm_frame_buf[i] = rx_fdm[j]; + //printf("i: %d j: %d rx_fdm[0]: %f %f\n", i,j, rx_fdm[0].real, rx_fdm[0].imag); + + /* if out of sync do Initial Freq offset estimation using NSW frames to flush out filter memories */ + + if (sync == 0) { + + /* we can test +/- 20Hz, so we break this up into 3 tests to cover +/- 60Hz */ + + max_ratio = 0.0; + f_est = 0.0; + for (coh->f_est = FDMDV_FCENTRE-40.0; coh->f_est <= FDMDV_FCENTRE+40.0; coh->f_est += 40.0) { + + if (coh->verbose) + fprintf(stderr, " [%d] acohpsk.f_est: %f +/- 20\n", coh->frame, (double)coh->f_est); + + /* we are out of sync so reset f_est and process two frames to clean out memories */ + + rate_Fs_rx_processing(coh, ch_symb, coh->ch_fdm_frame_buf, &coh->f_est, NSW*NSYMROWPILOT, COHPSK_M, 0); + for (i=0; i<NSW-1; i++) { + update_ct_symb_buf(coh->ct_symb_buf, &ch_symb[i*NSYMROWPILOT]); + } + frame_sync_fine_freq_est(coh, &ch_symb[(NSW-1)*NSYMROWPILOT], sync, &anext_sync); + + if (anext_sync == 1) { + //printf(" [%d] acohpsk.ratio: %f\n", f, coh->ratio); + if (coh->ratio > max_ratio) { + max_ratio = coh->ratio; + f_est = coh->f_est - coh->f_fine_est; + next_sync = anext_sync; + } + } + } + + if (next_sync == 1) { + + /* we've found a sync candidate! + re-process last NSW frames with adjusted f_est then check again */ + + coh->f_est = f_est; + + if (coh->verbose) + fprintf(stderr, " [%d] trying sync and f_est: %f\n", coh->frame, (double)coh->f_est); + + rate_Fs_rx_processing(coh, ch_symb, coh->ch_fdm_frame_buf, &coh->f_est, NSW*NSYMROWPILOT, COHPSK_M, 0); + for (i=0; i<NSW-1; i++) { + update_ct_symb_buf(coh->ct_symb_buf, &ch_symb[i*NSYMROWPILOT]); + } + /* + for(i=0; i<NSW*NSYMROWPILOT; i++) { + printf("%f %f\n", ch_symb[i][0].real, ch_symb[i][0].imag); + } + */ + /* + for(i=0; i<NCT_SYMB_BUF; i++) { + printf("%f %f\n", coh->ct_symb_buf[i][0].real, coh->ct_symb_buf[i][0].imag); + } + */ + frame_sync_fine_freq_est(coh, &ch_symb[(NSW-1)*NSYMROWPILOT], sync, &next_sync); + + if (fabsf(coh->f_fine_est) > 2.0) { + if (coh->verbose) + fprintf(stderr, " [%d] Hmm %f is a bit big :(\n", coh->frame, (double)coh->f_fine_est); + next_sync = 0; + } + } + + if (next_sync == 1) { + /* OK we are in sync! + demodulate first frame (demod completed below) */ + + if (coh->verbose) + fprintf(stderr, " [%d] in sync! f_est: %f ratio: %f \n", coh->frame, (double)coh->f_est, (double)coh->ratio); + for(r=0; r<NSYMROWPILOT+2; r++) + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) + coh->ct_symb_ff_buf[r][c] = coh->ct_symb_buf[coh->ct+r][c]; + } + } + + /* If in sync just do sample rate processing on latest frame */ + + if (sync == 1) { + rate_Fs_rx_processing(coh, ch_symb, rx_fdm, &coh->f_est, NSYMROWPILOT, coh->nin, 1); + frame_sync_fine_freq_est(coh, ch_symb, sync, &next_sync); + + for(r=0; r<2; r++) + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) + coh->ct_symb_ff_buf[r][c] = coh->ct_symb_ff_buf[r+NSYMROWPILOT][c]; + for(; r<NSYMROWPILOT+2; r++) + for(c=0; c<COHPSK_NC*COHPSK_ND; c++) + coh->ct_symb_ff_buf[r][c] = coh->ct_symb_buf[coh->ct+r][c]; + } + + /* if we are in sync complete demodulation with symbol rate processing */ + + *sync_good = 0; + if ((next_sync == 1) || (sync == 1)) { + qpsk_symbols_to_bits(coh, rx_bits, coh->ct_symb_ff_buf); + *sync_good = 1; + } + + sync = sync_state_machine(coh, sync, next_sync); + coh->sync = sync; + + /* work out how many samples we need for the next call to account + for differences in tx and rx sample clocks */ + + nin = COHPSK_M; + if (sync == 1) { + if (coh->rx_timing > COHPSK_M/P) + nin = COHPSK_M + COHPSK_M/P; + if (coh->rx_timing < -COHPSK_M/P) + nin = COHPSK_M - COHPSK_M/P; + } + coh->nin = nin; + *nin_frame = (NSYMROWPILOT-1)*COHPSK_M + nin; + //if (coh->verbose) + // fprintf(stderr, "%f %d %d\n", coh->rx_timing, nin, *nin_frame); +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_fs_offset() + AUTHOR......: David Rowe + DATE CREATED: May 2015 + + Simulates small Fs offset between mod and demod. + +\*---------------------------------------------------------------------------*/ + +int cohpsk_fs_offset(COMP out[], COMP in[], int n, float sample_rate_ppm) +{ + double f; + double tin = 0.0; + double step = 1.0 + sample_rate_ppm/1E6; + int t1, t2; + int tout = 0; + + while (tin < (double) n) { + t1 = (int) floor(tin); + t2 = (int) ceil(tin); + f = tin - (double) t1; + + out[tout].real = ((double)1.0-f)*(double)in[t1].real + f*(double)in[t2].real; + out[tout].imag = ((double)1.0-f)*(double)in[t1].imag + f*(double)in[t2].imag; + + tin += step; + tout++; + //printf("tin: %f tout: %d f: %f\n", tin, tout, f); + } + + return tout; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_get_demod_stats() + AUTHOR......: David Rowe + DATE CREATED: 14 June 2015 + + Fills stats structure with a bunch of demod information. + +\*---------------------------------------------------------------------------*/ + +void cohpsk_get_demod_stats(struct COHPSK *coh, struct MODEM_STATS *stats) +{ + float new_snr_est; + +#ifndef __EMBEDDED__ + float spi_4 = M_PI/4.0f; + COMP pi_4; + pi_4.real = cosf(spi_4); + pi_4.imag = sinf(spi_4); +#endif + + stats->Nc = COHPSK_NC*COHPSK_ND; + assert(stats->Nc <= MODEM_STATS_NC_MAX); + new_snr_est = 20.0f * log10f((coh->sig_rms+1E-6f)/(coh->noise_rms+1E-6f)) - 10.0f*log10f(3000.0f/700.0f); + stats->snr_est = 0.9f*stats->snr_est + 0.1f*new_snr_est; + + //fprintf(stderr, "sig_rms: %f noise_rms: %f snr_est: %f\n", coh->sig_rms, coh->noise_rms, stats->snr_est); + stats->sync = coh->sync; + stats->foff = coh->f_est - FDMDV_FCENTRE; + stats->rx_timing = coh->rx_timing; + stats->clock_offset = 0.0f; /* TODO - implement clock offset estimation */ + +#ifndef __EMBEDDED__ + assert(NSYMROW <= MODEM_STATS_NR_MAX); + stats->nr = NSYMROW; + for(int c=0; c<COHPSK_NC*COHPSK_ND; c++) { + for (int r=0; r<NSYMROW; r++) { + stats->rx_symbols[r][c] = cmult(coh->rx_symb[r][c], pi_4); + } + } +#endif +} + + +void cohpsk_set_verbose(struct COHPSK *coh, int verbose) +{ + assert(coh != NULL); + coh->verbose = verbose; +} + + +void cohpsk_set_frame(struct COHPSK *coh, int frame) +{ + assert(coh != NULL); + coh->frame = frame; +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_get_test_bits() + AUTHOR......: David Rowe + DATE CREATED: June 2015 + + Returns a frame of known test bits. + +\*---------------------------------------------------------------------------*/ + +void cohpsk_get_test_bits(struct COHPSK *coh, int rx_bits[]) +{ + memcpy(rx_bits, coh->ptest_bits_coh_tx, sizeof(int)*COHPSK_BITS_PER_FRAME); + coh->ptest_bits_coh_tx += COHPSK_BITS_PER_FRAME; + if (coh->ptest_bits_coh_tx >=coh->ptest_bits_coh_end) { + coh->ptest_bits_coh_tx = (int*)test_bits_coh; + } +} + + +/*---------------------------------------------------------------------------*\ + + FUNCTION....: cohpsk_put_test_bits() + AUTHOR......: David Rowe + DATE CREATED: June 2015 + + Accepts bits from demod and attempts to sync with the known + test_bits sequence. When synced measures bit errors. + + Has states to track two separate received test sequences based on + channel 0 or 1. + +\*---------------------------------------------------------------------------*/ + +void cohpsk_put_test_bits(struct COHPSK *coh, int *state, short error_pattern[], + int *bit_errors, char rx_bits_char[], int channel) +{ + int i, next_state, anerror; + int rx_bits[COHPSK_BITS_PER_FRAME]; + + assert((channel == 0) || (channel == 1)); + int *ptest_bits_coh_rx = coh->ptest_bits_coh_rx[channel]; + + for(i=0; i<COHPSK_BITS_PER_FRAME; i++) { + rx_bits[i] = rx_bits_char[i]; + } + + *bit_errors = 0; + for(i=0; i<COHPSK_BITS_PER_FRAME; i++) { + anerror = (rx_bits[i] & 0x1) ^ ptest_bits_coh_rx[i]; + if ((anerror < 0) || (anerror > 1)) { + fprintf(stderr, "i: %d rx_bits: %d ptest_bits_coh_rx: %d\n", i, rx_bits[i], ptest_bits_coh_rx[i]); + } + *bit_errors += anerror; + error_pattern[i] = anerror; + } + + /* state logic */ + + next_state = *state; + + if (*state == 0) { + if (*bit_errors < 4) { + next_state = 1; + ptest_bits_coh_rx += COHPSK_BITS_PER_FRAME; + if (ptest_bits_coh_rx >= coh->ptest_bits_coh_end) { + ptest_bits_coh_rx = (int*)test_bits_coh; + } + } + } + + /* if 5 frames with large BER reset test frame sync */ + + if (*state > 0) { + if (*bit_errors > 8) { + if (*state == 6) + next_state = 0; + else + next_state = *state+1; + } + else + next_state = 1; + } + + if (*state > 0) { + ptest_bits_coh_rx += COHPSK_BITS_PER_FRAME; + if (ptest_bits_coh_rx >= coh->ptest_bits_coh_end) { + ptest_bits_coh_rx = (int*)test_bits_coh; + } + } + + //fprintf(stderr, "state: %d next_state: %d bit_errors: %d\n", *state, next_state, *bit_errors); + + *state = next_state; + coh->ptest_bits_coh_rx[channel] = ptest_bits_coh_rx; +} + + +int cohpsk_error_pattern_size(void) { + return COHPSK_BITS_PER_FRAME; +} + + +float *cohpsk_get_rx_bits_lower(struct COHPSK *coh) { + return coh->rx_bits_lower; +} + +float *cohpsk_get_rx_bits_upper(struct COHPSK *coh) { + return coh->rx_bits_upper; +} + +void cohpsk_set_carrier_ampl(struct COHPSK *coh, int c, float ampl) { + assert(c < COHPSK_NC*COHPSK_ND); + coh->carrier_ampl[c] = ampl; + fprintf(stderr, "cohpsk_set_carrier_ampl: %d %f\n", c, (double)ampl); +} |
