aboutsummaryrefslogtreecommitdiff
path: root/src/cohpsk.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/cohpsk.c')
-rw-r--r--src/cohpsk.c1433
1 files changed, 1433 insertions, 0 deletions
diff --git a/src/cohpsk.c b/src/cohpsk.c
new file mode 100644
index 0000000..b7ce633
--- /dev/null
+++ b/src/cohpsk.c
@@ -0,0 +1,1433 @@
+/*---------------------------------------------------------------------------*\
+
+ FILE........: cohpsk.c
+ AUTHOR......: David Rowe
+ DATE CREATED: March 2015
+
+ Functions that implement a coherent PSK FDM modem.
+
+\*---------------------------------------------------------------------------*/
+
+/*
+ Copyright (C) 2015 David Rowe
+
+ All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License version 2.1, as
+ published by the Free Software Foundation. This program is
+ distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with this program; if not, see <http://www.gnu.org/licenses/>.
+*/
+
+/*---------------------------------------------------------------------------*\
+
+ INCLUDES
+
+\*---------------------------------------------------------------------------*/
+
+#include <assert.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+
+#include "codec2_cohpsk.h"
+#include "cohpsk_defs.h"
+#include "cohpsk_internal.h"
+#include "fdmdv_internal.h"
+#include "pilots_coh.h"
+#include "comp_prim.h"
+#include "kiss_fft.h"
+#include "linreg.h"
+#include "rn_coh.h"
+#include "test_bits_coh.h"
+
+#include "debug_alloc.h"
+
+static COMP qpsk_mod[] = {
+ { 1.0, 0.0},
+ { 0.0, 1.0},
+ { 0.0,-1.0},
+ {-1.0, 0.0}
+};
+
+static int sampling_points[] = {0, 1, 6, 7};
+
+void corr_with_pilots(float *corr_out, float *mag_out, struct COHPSK *coh, int t, float f_fine);
+void update_ct_symb_buf(COMP ct_symb_buf[][COHPSK_NC*COHPSK_ND], COMP ch_symb[][COHPSK_NC*COHPSK_ND]);
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTIONS
+
+\*---------------------------------------------------------------------------*/
+
+
+/*--------------------------------------------------------------------------* \
+
+ FUNCTION....: cohpsk_create
+ AUTHOR......: David Rowe
+ DATE CREATED: Marcg 2015
+
+ Create and initialise an instance of the modem. Returns a pointer
+ to the modem states or NULL on failure. One set of states is
+ sufficient for a full duplex modem.
+
+\*---------------------------------------------------------------------------*/
+
+struct COHPSK *cohpsk_create(void)
+{
+ struct COHPSK *coh;
+ struct FDMDV *fdmdv;
+ int r,c,p,i;
+ float freq_hz, result;
+ float tau = 2.0f * M_PI;
+
+ assert(COHPSK_NC == PILOTS_NC);
+ assert(COHPSK_NOM_SAMPLES_PER_FRAME == (COHPSK_M*NSYMROWPILOT));
+ assert(COHPSK_MAX_SAMPLES_PER_FRAME == (COHPSK_M*NSYMROWPILOT+COHPSK_M/P));
+ assert(COHPSK_NSYM == NSYM); /* as we want to use the tx sym mem on fdmdv */
+ assert(COHPSK_NT == NT);
+
+ coh = (struct COHPSK*)MALLOC(sizeof(struct COHPSK));
+ if (coh == NULL)
+ return NULL;
+
+ /* set up buffer of tx pilot symbols for coh demod on rx */
+
+ for(r=0; r<2*NPILOTSFRAME; ) {
+ for(p=0; p<NPILOTSFRAME; r++, p++) {
+ for(c=0; c<COHPSK_NC; c++) {
+ coh->pilot2[r][c] = pilots_coh[p][c];
+ }
+ }
+ }
+
+ /* Clear symbol buffer memory */
+
+ for (r=0; r<NCT_SYMB_BUF; r++) {
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ coh->ct_symb_buf[r][c].real = 0.0;
+ coh->ct_symb_buf[r][c].imag = 0.0;
+ }
+ }
+
+ coh->ff_phase.real = 1.0; coh->ff_phase.imag = 0.0;
+ coh->sync = 0;
+ coh->frame = 0;
+ coh->ratio = 0.0;
+ coh->nin = COHPSK_M;
+
+ /* clear sync window buffer */
+
+ for (i=0; i<NSW*NSYMROWPILOT*COHPSK_M; i++) {
+ coh->ch_fdm_frame_buf[i].real = 0.0;
+ coh->ch_fdm_frame_buf[i].imag = 0.0;
+ }
+
+ /* set up fdmdv states so we can use those modem functions */
+
+ /*
+ * NC*ND -1 Realize that the function creates a sync carrier (+1),
+ * or one more carrier than asked for. We ignore any initialization
+ * inside of fdmdv and take care of that here, using the whole
+ * NC*ND number of carriers to be used in cohpsk.
+ */
+ fdmdv = fdmdv_create((COHPSK_NC*COHPSK_ND) - 1);
+
+ fdmdv->fsep = COHPSK_RS*(1.0 + COHPSK_EXCESS_BW);
+
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ fdmdv->phase_tx[c].real = 1.0;
+ fdmdv->phase_tx[c].imag = 0.0;
+
+ /* note non-linear carrier spacing to help PAPR, works v well in conjunction with CLIP */
+
+ freq_hz = fdmdv->fsep*( -(COHPSK_NC*COHPSK_ND)/2 - 0.5f + powf(c + 1.0f, 0.98f) );
+ result = tau * freq_hz/COHPSK_FS;
+
+ fdmdv->freq[c].real = cosf(result);
+ fdmdv->freq[c].imag = sinf(result);
+ fdmdv->freq_pol[c] = result;
+
+ //printf("c: %d %f %f\n",c,freq_hz,fdmdv->freq_pol[c]);
+ for(i=0; i<COHPSK_NFILTER; i++) {
+ coh->rx_filter_memory[c][i].real = 0.0;
+ coh->rx_filter_memory[c][i].imag = 0.0;
+ }
+
+ /* optional per-carrier amplitude weighting for testing */
+
+ coh->carrier_ampl[c] = 1.0;
+ }
+
+ result = tau * FDMDV_FCENTRE/COHPSK_FS;
+ fdmdv->fbb_rect.real = cosf(result);
+ fdmdv->fbb_rect.imag = sinf(result);
+ fdmdv->fbb_pol = result;
+
+ coh->fdmdv = fdmdv;
+
+ coh->sig_rms = coh->noise_rms = 0.0;
+
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ for (r=0; r<NSYMROW; r++) {
+ coh->rx_symb[r][c].real = 0.0;
+ coh->rx_symb[r][c].imag = 0.0;
+ }
+ }
+
+ coh->verbose = 0;
+
+ /* disable optional logging by default */
+
+ coh->rx_baseband_log = NULL;
+ coh->rx_baseband_log_col_index = 0;
+ coh->rx_filt_log = NULL;
+ coh->rx_filt_log_col_index = 0;
+ coh->ch_symb_log = NULL;
+ coh->ch_symb_log_r = 0;
+ coh->rx_timing_log = NULL;
+ coh->rx_timing_log_index = 0;
+
+ /* test frames */
+
+ coh->ptest_bits_coh_tx = coh->ptest_bits_coh_rx[0] = coh->ptest_bits_coh_rx[1] = (int*)test_bits_coh;
+ coh->ptest_bits_coh_end = (int*)test_bits_coh + sizeof(test_bits_coh)/sizeof(int);
+
+ return coh;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_destroy
+ AUTHOR......: David Rowe
+ DATE CREATED: March 2015
+
+ Destroy an instance of the modem.
+
+\*---------------------------------------------------------------------------*/
+
+void cohpsk_destroy(struct COHPSK *coh)
+{
+ fdmdv_destroy(coh->fdmdv);
+ assert(coh != NULL);
+ FREE(coh);
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: bits_to_qpsk_symbols()
+ AUTHOR......: David Rowe
+ DATE CREATED: March 2015
+
+ Rate Rs modulator. Maps bits to parallel DQPSK symbols and inserts pilot symbols.
+
+\*---------------------------------------------------------------------------*/
+
+void bits_to_qpsk_symbols(COMP tx_symb[][COHPSK_NC*COHPSK_ND], int tx_bits[], int nbits)
+{
+ int i, r, c, p_r, data_r, d, diversity;
+ short bits;
+
+ /* check allowed number of bits supplied matches number of QPSK
+ symbols in the frame */
+
+ assert( (NSYMROW*COHPSK_NC*2 == nbits) || (NSYMROW*COHPSK_NC*2*COHPSK_ND == nbits));
+
+ /* if we input twice as many bits we don't do diversity */
+
+ if (NSYMROW*COHPSK_NC*2 == nbits) {
+ diversity = 1; /* diversity mode */
+ }
+ else {
+ diversity = 2; /* twice as many bits, non diversity mode */
+ }
+
+ /*
+ Insert two rows of Nc pilots at beginning of data frame.
+
+ Organise QPSK symbols into a NSYMBROWS rows by PILOTS_NC*ND cols matrix,
+ each column is a carrier, time flows down the cols......
+
+ Note: the "& 0x1" prevents and non binary tx_bits[] screwing up
+ our lives. Call me defensive.
+
+ sqrtf(ND) term ensures the same energy/symbol for different
+ diversity factors.
+ */
+
+ r = 0;
+ for(p_r=0; p_r<2; p_r++) {
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ tx_symb[r][c].real = pilots_coh[p_r][c % COHPSK_NC]/sqrtf(COHPSK_ND);
+ tx_symb[r][c].imag = 0.0;
+ }
+ r++;
+ }
+ for(data_r=0; data_r<NSYMROW; data_r++, r++) {
+ for(c=0; c<COHPSK_NC*diversity; c++) {
+ i = c*NSYMROW + data_r;
+ bits = (tx_bits[2*i]&0x1)<<1 | (tx_bits[2*i+1]&0x1);
+ tx_symb[r][c] = fcmult(1.0/sqrtf(COHPSK_ND),qpsk_mod[bits]);
+ }
+ }
+
+ assert(p_r == NPILOTSFRAME);
+ assert(r == NSYMROWPILOT);
+
+ /* if in diversity mode, copy symbols to upper carriers */
+
+ for(d=1; d<1+COHPSK_ND-diversity; d++) {
+ for(r=0; r<NSYMROWPILOT; r++) {
+ for(c=0; c<COHPSK_NC; c++) {
+ tx_symb[r][c+COHPSK_NC*d] = tx_symb[r][c];
+ }
+ }
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: qpsk_symbols_to_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: March 2015
+
+ Rate Rs demodulator. Extract pilot symbols and estimate amplitude and phase
+ of each carrier. Correct phase of data symbols and convert to bits.
+
+ Further improvement. In channels with slowly changing phase we
+ could optionally use pilots from several past and future symbols.
+
+\*---------------------------------------------------------------------------*/
+
+void qpsk_symbols_to_bits(struct COHPSK *coh, float rx_bits[], COMP ct_symb_buf[][COHPSK_NC*COHPSK_ND])
+{
+ int p, r, c, i, pc, d, n;
+ float x[NPILOTSFRAME+2], x1;
+ COMP y[NPILOTSFRAME+2], yfit;
+ COMP rx_symb_linear[NSYMROW*COHPSK_NC*COHPSK_ND];
+ COMP m, b;
+ COMP __attribute__((unused)) corr, rot, pi_on_4, phi_rect, div_symb;
+ float mag, __attribute__((unused)) phi_, __attribute__((unused)) amp_;
+ float sum_x, sum_xx, noise_var;
+ float spi_4 = M_PI / 4.0f;
+ COMP s;
+
+ pi_on_4.real = cosf(spi_4); pi_on_4.imag = sinf(spi_4);
+
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+
+ /* Set up lin reg model and interpolate phase. Works better than average for channels with
+ quickly changing phase, like HF. */
+
+ for(p=0; p<NPILOTSFRAME+2; p++) {
+ x[p] = sampling_points[p];
+ pc = c % COHPSK_NC;
+ y[p] = fcmult(coh->pilot2[p][pc], ct_symb_buf[sampling_points[p]][c]);
+ }
+
+ linreg(&m, &b, x, y, NPILOTSFRAME+2);
+ for(r=0; r<NSYMROW; r++) {
+ x1 = (float)(r+NPILOTSFRAME);
+ yfit = cadd(fcmult(x1,m),b);
+ coh->phi_[r][c] = atan2f(yfit.imag, yfit.real);
+ }
+
+ /* amplitude estimation */
+
+ mag = 0.0f;
+ for(p=0; p<NPILOTSFRAME+2; p++) {
+ mag += cabsolute(ct_symb_buf[sampling_points[p]][c]);
+ }
+ amp_ = mag/(NPILOTSFRAME+2);
+ for(r=0; r<NSYMROW; r++) {
+ coh->amp_[r][c] = amp_;
+ }
+ }
+
+ /* now correct phase of data symbols */
+
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ for (r=0; r<NSYMROW; r++) {
+ phi_rect.real = cosf(coh->phi_[r][c]); phi_rect.imag = -sinf(coh->phi_[r][c]);
+ coh->rx_symb[r][c] = cmult(ct_symb_buf[NPILOTSFRAME + r][c], phi_rect);
+ i = c*NSYMROW + r;
+ rx_symb_linear[i] = coh->rx_symb[r][c];
+ }
+ }
+
+ /* and finally optional diversity combination, note output is soft decn a "1" is < 0 */
+
+ for(c=0; c<COHPSK_NC; c++) {
+ for(r=0; r<NSYMROW; r++) {
+ div_symb = coh->rx_symb[r][c];
+ for (d=1; d<COHPSK_ND; d++) {
+ div_symb = cadd(div_symb, coh->rx_symb[r][c + COHPSK_NC*d]);
+ }
+ rot = cmult(div_symb, pi_on_4);
+ i = c*NSYMROW + r;
+ rx_bits[2*i+1] = rot.real;
+ rx_bits[2*i] = rot.imag;
+
+ /* demodulate bits from upper and lower carriers separately for test purposes */
+
+ assert(COHPSK_ND == 2);
+
+ i = c*NSYMROW + r;
+ rot = cmult(coh->rx_symb[r][c], pi_on_4);
+ coh->rx_bits_lower[2*i+1] = rot.real;
+ coh->rx_bits_lower[2*i] = rot.imag;
+ rot = cmult(coh->rx_symb[r][c + COHPSK_NC], pi_on_4);
+ coh->rx_bits_upper[2*i+1] = rot.real;
+ coh->rx_bits_upper[2*i] = rot.imag;
+ }
+ }
+
+
+ /* estimate RMS signal and noise */
+
+ mag = 0.0f;
+ for(i=0; i<NSYMROW*COHPSK_NC*COHPSK_ND; i++)
+ mag += cabsolute(rx_symb_linear[i]);
+ coh->sig_rms = mag/(NSYMROW*COHPSK_NC*COHPSK_ND);
+
+ sum_x = 0.0f;
+ sum_xx = 0.0f;
+ n = 0;
+ for (i=0; i<NSYMROW*COHPSK_NC*COHPSK_ND; i++) {
+ s = rx_symb_linear[i];
+ if (fabsf(s.real) > coh->sig_rms) {
+ sum_x += s.imag;
+ sum_xx += s.imag*s.imag;
+ n++;
+ }
+ }
+
+ noise_var = 0.0f;
+ if (n > 1) {
+ noise_var = (n*sum_xx - sum_x*sum_x)/(n*(n-1));
+ }
+ coh->noise_rms = sqrtf(noise_var);
+
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: tx_filter_and_upconvert_coh()
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2015
+
+ Given NC symbols construct M samples (1 symbol) of NC filtered
+ and upconverted symbols.
+
+ TODO: work out a way to merge with fdmdv version, e.g. run time define M/NSYM,
+ and run unittests on fdmdv and cohpsk modem afterwards.
+
+\*---------------------------------------------------------------------------*/
+
+void tx_filter_and_upconvert_coh(COMP tx_fdm[], int Nc, const COMP tx_symbols[],
+ COMP tx_filter_memory[][COHPSK_NSYM],
+ COMP phase_tx[], COMP freq[],
+ COMP *fbb_phase, COMP fbb_rect)
+{
+ int c;
+ int i,j,k;
+ float acc;
+ COMP gain;
+ COMP tx_baseband;
+ COMP two = {2.0, 0.0};
+ float mag;
+
+ gain.real = sqrtf(2.0)/2.0;
+ gain.imag = 0.0;
+
+ for(i=0; i<COHPSK_M; i++) {
+ tx_fdm[i].real = 0.0;
+ tx_fdm[i].imag = 0.0;
+ }
+
+ for(c=0; c<Nc; c++)
+ tx_filter_memory[c][COHPSK_NSYM-1] = cmult(tx_symbols[c], gain);
+
+ /*
+ tx filter each symbol, generate M filtered output samples for
+ each symbol, which we then freq shift and sum with other
+ carriers. Efficient polyphase filter techniques used as
+ tx_filter_memory is sparse
+ */
+
+ for(c=0; c<Nc; c++) {
+ for(i=0; i<COHPSK_M; i++) {
+
+ /* filter real sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=COHPSK_M-i-1; j<COHPSK_NSYM; j++,k+=COHPSK_M)
+ acc += COHPSK_M * tx_filter_memory[c][j].real * gt_alpha5_root_coh[k];
+ tx_baseband.real = acc;
+
+ /* filter imag sample of symbol for carrier c */
+
+ acc = 0.0;
+ for(j=0,k=COHPSK_M-i-1; j<COHPSK_NSYM; j++,k+=COHPSK_M)
+ acc += COHPSK_M * tx_filter_memory[c][j].imag * gt_alpha5_root_coh[k];
+ tx_baseband.imag = acc;
+ //printf("%d %d %f %f\n", c, i, tx_baseband.real, tx_baseband.imag);
+
+ /* freq shift and sum */
+
+ phase_tx[c] = cmult(phase_tx[c], freq[c]);
+ tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c]));
+ //printf("%d %d %f %f\n", c, i, phase_tx[c].real, phase_tx[c].imag);
+ }
+ //exit(0);
+ }
+
+ /* shift whole thing up to carrier freq */
+
+ for (i=0; i<COHPSK_M; i++) {
+ *fbb_phase = cmult(*fbb_phase, fbb_rect);
+ tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
+ }
+
+ /*
+ Scale such that total Carrier power C of real(tx_fdm) = Nc. This
+ excludes the power of the pilot tone.
+ We return the complex (single sided) signal to make frequency
+ shifting for the purpose of testing easier
+ */
+
+ for (i=0; i<COHPSK_M; i++)
+ tx_fdm[i] = cmult(two, tx_fdm[i]);
+
+ /* normalise digital oscillators as the magnitude can drift over time */
+
+ for (c=0; c<Nc; c++) {
+ mag = cabsolute(phase_tx[c]);
+ phase_tx[c].real /= mag;
+ phase_tx[c].imag /= mag;
+ }
+
+ mag = cabsolute(*fbb_phase);
+ fbb_phase->real /= mag;
+ fbb_phase->imag /= mag;
+
+ /* shift memory, inserting zeros at end */
+
+ for(i=0; i<COHPSK_NSYM-1; i++)
+ for(c=0; c<Nc; c++)
+ tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
+
+ for(c=0; c<Nc; c++) {
+ tx_filter_memory[c][COHPSK_NSYM-1].real = 0.0;
+ tx_filter_memory[c][COHPSK_NSYM-1].imag = 0.0;
+ }
+}
+
+
+
+void corr_with_pilots(float *corr_out, float *mag_out, struct COHPSK *coh, int t, float f_fine)
+{
+ COMP acorr, f_fine_rect[NPILOTSFRAME+2], f_corr;
+ float mag, corr, result;
+ float tau = 2.0f * M_PI;
+ int c, p, pc;
+
+ for (p=0; p<NPILOTSFRAME+2; p++) {
+ result = f_fine * tau * (sampling_points[p]+1.0) / COHPSK_RS;
+ f_fine_rect[p].real = cosf(result);
+ f_fine_rect[p].imag = sinf(result);
+ }
+
+ corr = 0.0; mag = 1E-12;
+ for (c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ acorr.real = 0.0f; acorr.imag = 0.0f; pc = c % COHPSK_NC;
+ for (p=0; p<NPILOTSFRAME+2; p++) {
+ f_corr = cmult(f_fine_rect[p], coh->ct_symb_buf[t+sampling_points[p]][c]);
+ acorr = cadd(acorr, fcmult(coh->pilot2[p][pc], f_corr));
+ mag += cabsolute(f_corr);
+ }
+ corr += cabsolute(acorr);
+ }
+
+ *corr_out = corr;
+ *mag_out = mag;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: frame_sync_fine_freq_est()
+ AUTHOR......: David Rowe
+ DATE CREATED: April 2015
+
+ Returns an estimate of frame sync (coarse timing) offset and fine
+ frequency offset, advances to next sync state if we have a reliable
+ match for frame sync.
+
+\*---------------------------------------------------------------------------*/
+
+void frame_sync_fine_freq_est(struct COHPSK *coh, COMP ch_symb[][COHPSK_NC*COHPSK_ND], int sync, int *next_sync)
+{
+ int t;
+ float f_fine, mag, max_corr, max_mag, corr, result;
+ float tau = 2.0f * M_PI;
+
+ update_ct_symb_buf(coh->ct_symb_buf, ch_symb);
+
+ /* sample pilots at start of this frame and start of next frame */
+
+ if (sync == 0) {
+
+ /* sample correlation over 2D grid of time and fine freq points */
+
+ max_corr = 0.0; max_mag = 1E-12;
+ for (f_fine=-20; f_fine<=20; f_fine+=0.25) {
+ for (t=0; t<NSYMROWPILOT; t++) {
+ corr_with_pilots(&corr, &mag, coh, t, f_fine);
+ //printf(" f: %f t: %d corr: %f mag: %f\n", f_fine, t, corr, mag);
+ if (corr >= max_corr) {
+ max_corr = corr;
+ max_mag = mag;
+ coh->ct = t;
+ coh->f_fine_est = f_fine;
+ }
+ }
+ }
+
+
+ result = coh->f_fine_est * tau / COHPSK_RS;
+
+ coh->ff_rect.real = cosf(result);
+ coh->ff_rect.imag = -sinf(result);
+ if (coh->verbose)
+ fprintf(stderr, " [%d] fine freq f: %6.2f max_ratio: %f ct: %d\n", coh->frame, (double)coh->f_fine_est, (double)max_corr/(double)max_mag, coh->ct);
+
+ if (max_corr/max_mag > 0.9) {
+ if (coh->verbose)
+ fprintf(stderr, " [%d] encouraging sync word!\n", coh->frame);
+ coh->sync_timer = 0;
+ *next_sync = 1;
+ }
+ else {
+ *next_sync = 0;
+ }
+ coh->ratio = max_corr/max_mag;
+ }
+}
+
+
+void update_ct_symb_buf(COMP ct_symb_buf[][COHPSK_NC*COHPSK_ND], COMP ch_symb[][COHPSK_NC*COHPSK_ND])
+{
+ int r, c, i;
+
+ /* update memory in symbol buffer */
+
+ for(r=0; r<NCT_SYMB_BUF-NSYMROWPILOT; r++) {
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++)
+ ct_symb_buf[r][c] = ct_symb_buf[r+NSYMROWPILOT][c];
+ }
+
+ for(r=NCT_SYMB_BUF-NSYMROWPILOT, i=0; r<NCT_SYMB_BUF; r++, i++) {
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++)
+ ct_symb_buf[r][c] = ch_symb[i][c];
+ }
+}
+
+
+int sync_state_machine(struct COHPSK *coh, int sync, int next_sync)
+{
+ float corr, mag;
+
+ if (sync == 1) {
+
+ /* check that sync is still good, fall out of sync on consecutive bad frames */
+
+ corr_with_pilots(&corr, &mag, coh, coh->ct, coh->f_fine_est);
+ coh->ratio = fabsf(corr)/mag;
+
+ // printf("%f\n", cabsolute(corr)/mag);
+
+ if (fabsf(corr)/mag < 0.8)
+ coh->sync_timer++;
+ else
+ coh->sync_timer = 0;
+
+ if (coh->sync_timer == 10) {
+ if (coh->verbose)
+ fprintf(stderr," [%d] lost sync ....\n", coh->frame);
+ next_sync = 0;
+ }
+ }
+
+ sync = next_sync;
+
+ return sync;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_mod()
+ AUTHOR......: David Rowe
+ DATE CREATED: 5/4/2015
+
+ COHPSK modulator, take a frame of COHPSK_BITS_PER_FRAME or
+ 2*COHPSK_BITS_PER_FRAME bits and generates a frame of
+ COHPSK_NOM_SAMPLES_PER_FRAME modulated symbols.
+
+ if nbits == COHPSK_BITS_PER_FRAME, diveristy mode is used, if nbits
+ == 2*COHPSK_BITS_PER_FRAME diversity mode is not used.
+
+ The output signal is complex to support single sided frequency
+ shifting, for example when testing frequency offsets in channel
+ simulation.
+
+\*---------------------------------------------------------------------------*/
+
+void cohpsk_mod(struct COHPSK *coh, COMP tx_fdm[], int tx_bits[], int nbits)
+{
+ struct FDMDV *fdmdv = coh->fdmdv;
+ COMP tx_symb[NSYMROWPILOT][COHPSK_NC*COHPSK_ND];
+ COMP tx_onesym[COHPSK_NC*COHPSK_ND];
+ int r,c;
+
+ bits_to_qpsk_symbols(tx_symb, tx_bits, nbits);
+
+ for(r=0; r<NSYMROWPILOT; r++) {
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++)
+ tx_onesym[c] = fcmult(coh->carrier_ampl[c], tx_symb[r][c]);
+ tx_filter_and_upconvert_coh(&tx_fdm[r*COHPSK_M], COHPSK_NC*COHPSK_ND , tx_onesym, fdmdv->tx_filter_memory,
+ fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_clip()
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2015
+
+ Hard clips a complex signal magnitude (Hilbert Clipping) to improve PAPR.
+
+\*---------------------------------------------------------------------------*/
+
+void cohpsk_clip(COMP tx_fdm[], float clip_thresh, int n)
+{
+ COMP sam;
+ float mag;
+ int i;
+
+ for(i=0; i<n; i++) {
+ sam = tx_fdm[i];
+ mag = cabsolute(sam);
+ if (mag > clip_thresh) {
+ sam = fcmult(clip_thresh/mag, sam);
+ }
+ tx_fdm[i] = sam;
+ }
+ }
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdm_downconvert_coh
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2015
+
+ Frequency shift each modem carrier down to NC baseband signals.
+
+ TODO: try to combine with fdmdv version, carefully re-test fdmdv modem.
+
+\*---------------------------------------------------------------------------*/
+
+void fdm_downconvert_coh(COMP rx_baseband[][COHPSK_M+COHPSK_M/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
+{
+ int i,c;
+ float mag;
+
+ /* maximum number of input samples to demod */
+
+ assert(nin <= (COHPSK_M+COHPSK_M/P));
+
+ /* downconvert */
+
+ for (c=0; c<Nc; c++)
+ for (i=0; i<nin; i++) {
+ phase_rx[c] = cmult(phase_rx[c], freq[c]);
+ rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
+ }
+
+ /* normalise digital oscilators as the magnitude can drift over time */
+
+ for (c=0; c<Nc; c++) {
+ mag = cabsolute(phase_rx[c]);
+ phase_rx[c].real /= mag;
+ phase_rx[c].imag /= mag;
+ }
+}
+
+/* Determine if we can use vector ops below. */
+#if __GNUC__ > 4 || \
+ (__GNUC__ == 4 && (__GNUC_MINOR__ > 6 || \
+ (__GNUC_MINOR__ == 6 && \
+ __GNUC_PATCHLEVEL__ > 0)))
+#define USE_VECTOR_OPS 1
+#elif __clang_major__ > 3 || \
+ (__clang_minor__ == 3 && (__clang_minor__ > 7 || \
+ (__clang_minor__ == 7 && \
+ __clang_patchlevel__ > 0)))
+#define USE_VECTOR_OPS 1
+#endif
+
+#if USE_VECTOR_OPS
+
+#ifdef __ARM_NEON
+#include "arm_neon.h"
+
+typedef float32x4_t float4;
+#else
+/* Vector of 4 floating point numbers for use by the below function */
+typedef float float4 __attribute__ ((vector_size (16)));
+#endif // __ARM_NEON
+
+#endif /* USE_VECTOR_OPS */
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: rx_filter_coh()
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2015
+
+ cohpsk version of fdmdv.c rx_filter function.
+
+ TODO: see if we can merge the two! Will require re-testing of fdmdv modem.
+
+\*---------------------------------------------------------------------------*/
+
+inline extern void rx_filter_coh(COMP rx_filt[COHPSK_NC*COHPSK_ND][P+1], int Nc, COMP rx_baseband[COHPSK_NC*COHPSK_ND][COHPSK_M+COHPSK_M/P], COMP rx_filter_memory[COHPSK_NC*COHPSK_ND][COHPSK_NFILTER], int nin)
+{
+ int c,i,j,k,l;
+ int n=COHPSK_M/P;
+
+ /* rx filter each symbol, generate P filtered output samples for
+ each symbol. Note we keep filter memory at rate M, it's just
+ the filter output at rate P */
+
+ for(i=0, j=0; i<nin; i+=n,j++)
+ {
+
+ /* latest input sample */
+
+ for(c=0; c<Nc; c++)
+ {
+ rx_filt[c][j].real = 0.0;
+ rx_filt[c][j].imag = 0.0;
+
+ /*
+ This call is equivalent to the code below:
+
+ for(k=COHPSK_NFILTER-n,l=i; k<COHPSK_NFILTER; k++,l++)
+ {
+ rx_filter_memory[c][k] = rx_baseband[c][l];
+ }
+ */
+ memcpy(
+ &rx_filter_memory[c][COHPSK_NFILTER-n],
+ &rx_baseband[c][i],
+ sizeof(COMP)*n);
+
+ /* convolution (filtering) */
+
+#if USE_VECTOR_OPS
+ /* assumes COHPSK_NFILTER is divisible by 2 */
+
+#ifdef __ARM_NEON
+ float4 resultVec = vdupq_n_f32(0);
+#else
+ float4 resultVec = {0, 0, 0, 0};
+#endif // __ARM_NEON
+
+ for(k=0, l=0; k<COHPSK_NFILTER; k += 2, l += 4)
+ {
+#ifdef __ARM_NEON
+ // Fetch gt_alpha5_root_coh and place it into a vector for later use.
+ // First half at index k, second half at index k + 1.
+ float4 alpha5Vec = vld1q_f32((const float32_t*)&gt_alpha5_root_coh_neon[l]);
+
+ // Load two COMP elements (each containing two floats) into 4 element vector.
+ float4 filterMemVec = vld1q_f32((const float32_t *)&rx_filter_memory[c][k]);
+
+ // Multiply each element of filterMemVec by alpha5Vec from above and add to the
+ // running total in resultVec. Odd indices are reals, even imag.
+ resultVec = vmlaq_f32(resultVec, alpha5Vec, filterMemVec);
+#else
+ // Fetch gt_alpha5_root_coh and place it into a vector for later use.
+ // First half at index k, second half at index k + 1.
+ float4 alpha5Vec = {
+ gt_alpha5_root_coh_neon[l], gt_alpha5_root_coh_neon[l + 1], gt_alpha5_root_coh_neon[l + 2], gt_alpha5_root_coh_neon[l + 3],
+ };
+
+ // Load two COMP elements (each containing two floats) into 4 element vector.
+ float4 filterMemVec = {
+ rx_filter_memory[c][k].real, rx_filter_memory[c][k].imag, rx_filter_memory[c][k + 1].real, rx_filter_memory[c][k + 1].imag,
+ };
+
+ // Multiply each element of filterMemVec by alpha5Vec from above and add to the
+ // running total in resultVec. Odd indices are reals, even imag.
+ resultVec += alpha5Vec * filterMemVec;
+
+#endif // __ARM_NEON
+ }
+
+ // Add total from resultVec to rx_filt.
+ rx_filt[c][j].real += resultVec[0] + resultVec[2];
+ rx_filt[c][j].imag += resultVec[1] + resultVec[3];
+#else
+ for(k=0; k<COHPSK_NFILTER; k++)
+ {
+ /*
+ Equivalent to this code:
+
+ rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root_coh[k], rx_filter_memory[c][k]));
+ */
+ rx_filt[c][j].real += gt_alpha5_root_coh[k] * rx_filter_memory[c][k].real;
+ rx_filt[c][j].imag += gt_alpha5_root_coh[k] * rx_filter_memory[c][k].imag;
+ }
+#endif /* USE_VECTOR_OPS */
+
+ /*
+ make room for next input sample.
+
+ The below call is equivalent to this code:
+
+ for(k=0,l=n; k<COHPSK_NFILTER-n; k++,l++)
+ {
+ rx_filter_memory[c][k] = rx_filter_memory[c][l];
+ }
+ */
+ memmove(
+ &rx_filter_memory[c][0],
+ &rx_filter_memory[c][n],
+ sizeof(COMP)*(COHPSK_NFILTER-n));
+ }
+ }
+
+ assert(j <= (P+1)); /* check for any over runs */
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: fdmdv_freq_shift_coh()
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2015
+
+ Frequency shift modem signal. The use of complex input and output allows
+ single sided frequency shifting (no images).
+
+\*---------------------------------------------------------------------------*/
+
+void fdmdv_freq_shift_coh(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff, float Fs,
+ COMP *foff_phase_rect, int nin)
+{
+ COMP foff_rect;
+ float mag;
+ float tau = 2.0f * M_PI;
+ float result = tau * foff/Fs;
+ int i;
+
+ foff_rect.real = cosf(result);
+ foff_rect.imag = sinf(result);
+ for(i=0; i<nin; i++) {
+ *foff_phase_rect = cmult(*foff_phase_rect, foff_rect);
+ rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
+ }
+
+ /* normalise digital oscillator as the magnitude can drift over time */
+
+ mag = cabsolute(*foff_phase_rect);
+ foff_phase_rect->real /= mag;
+ foff_phase_rect->imag /= mag;
+}
+
+
+void rate_Fs_rx_processing(struct COHPSK *coh, COMP ch_symb[][COHPSK_NC*COHPSK_ND], COMP ch_fdm_frame[], float *f_est, int nsymb, int nin, int freq_track)
+{
+ struct FDMDV *fdmdv = coh->fdmdv;
+ int r, c, i, ch_fdm_frame_index;
+ COMP rx_fdm_frame_bb[COHPSK_M+COHPSK_M/P];
+ COMP rx_baseband[COHPSK_NC*COHPSK_ND][COHPSK_M+COHPSK_M/P];
+ COMP rx_filt[COHPSK_NC*COHPSK_ND][P+1];
+ float env[NT*P], rx_timing;
+ COMP rx_onesym[COHPSK_NC*COHPSK_ND];
+ float beta, g;
+ COMP adiff, amod_strip, mod_strip;
+
+ ch_fdm_frame_index = 0;
+ rx_timing = 0;
+
+ for (r=0; r<nsymb; r++) {
+ fdmdv_freq_shift_coh(rx_fdm_frame_bb, &ch_fdm_frame[ch_fdm_frame_index], -(*f_est), COHPSK_FS, &fdmdv->fbb_phase_rx, nin);
+ ch_fdm_frame_index += nin;
+ fdm_downconvert_coh(rx_baseband, COHPSK_NC*COHPSK_ND, rx_fdm_frame_bb, fdmdv->phase_rx, fdmdv->freq, nin);
+ rx_filter_coh(rx_filt, COHPSK_NC*COHPSK_ND, rx_baseband, coh->rx_filter_memory, nin);
+ rx_timing = rx_est_timing(rx_onesym, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, nin, COHPSK_M);
+
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ ch_symb[r][c] = rx_onesym[c];
+ }
+
+ /* freq tracking, see test_ftrack.m for unit test. Placed in
+ this function as it needs to work on a symbol by symbol
+ abasis rather than frame by frame. This means the control
+ loop operates at a sample rate of Rs = 50Hz for say 1 Hz/s
+ drift. */
+
+ if (freq_track) {
+ beta = 0.005;
+ g = 0.2;
+
+ /* combine difference on phase from last symbol over Nc carriers */
+
+ mod_strip.real = 0.0; mod_strip.imag = 0.0;
+ for(c=0; c<fdmdv->Nc+1; c++) {
+ //printf("rx_onesym[%d] %f %f prev_rx_symbols[%d] %f %f\n", c, rx_onesym[c].real, rx_onesym[c].imag,
+ // fdmdv->prev_rx_symbols[c].real, fdmdv->prev_rx_symbols[c].imag);
+ adiff = cmult(rx_onesym[c], cconj(fdmdv->prev_rx_symbols[c]));
+ fdmdv->prev_rx_symbols[c] = rx_onesym[c];
+
+ /* 4th power strips QPSK modulation, by multiplying phase by 4
+ Using the abs value of the real coord was found to help
+ non-linear issues when noise power was large. */
+
+ amod_strip = cmult(adiff, adiff);
+ amod_strip = cmult(amod_strip, amod_strip);
+ amod_strip.real = fabsf(amod_strip.real);
+ mod_strip = cadd(mod_strip, amod_strip);
+ }
+ //printf("modstrip: %f %f\n", mod_strip.real, mod_strip.imag);
+
+ /* loop filter made up of 1st order IIR plus integrator. Integerator
+ was found to be reqd */
+
+ fdmdv->foff_filt = (1.0f-beta)*fdmdv->foff_filt + beta*atan2f(mod_strip.imag, mod_strip.real);
+ //printf("foff_filt: %f angle: %f\n", fdmdv->foff_filt, atan2f(mod_strip.imag, mod_strip.real));
+ *f_est += g*fdmdv->foff_filt;
+ }
+
+ /* Optional logging used for testing against Octave version */
+
+ if (coh->rx_baseband_log) {
+ assert(nin <= (COHPSK_M+COHPSK_M/P));
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ for(i=0; i<nin; i++) {
+ coh->rx_baseband_log[c*coh->rx_baseband_log_col_sz + coh->rx_baseband_log_col_index + i] = rx_baseband[c][i];
+ }
+ }
+ coh->rx_baseband_log_col_index += nin;
+ assert(coh->rx_baseband_log_col_index <= coh->rx_baseband_log_col_sz);
+ }
+
+ if (coh->rx_filt_log) {
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ for(i=0; i<nin/(COHPSK_M/P); i++) {
+ coh->rx_filt_log[c*coh->rx_filt_log_col_sz + coh->rx_filt_log_col_index + i] = rx_filt[c][i];
+ }
+ }
+ coh->rx_filt_log_col_index += nin/(COHPSK_M/P);
+ }
+
+ if (coh->ch_symb_log) {
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ coh->ch_symb_log[coh->ch_symb_log_r*COHPSK_NC*COHPSK_ND + c] = ch_symb[r][c];
+ }
+ coh->ch_symb_log_r++;
+ }
+
+ if (coh->rx_timing_log) {
+ coh->rx_timing_log[coh->rx_timing_log_index] = rx_timing;
+ coh->rx_timing_log_index++;
+ //printf("rx_timing_log_index: %d\n", coh->rx_timing_log_index);
+ }
+
+ /* we only allow a timing shift on one symbol per frame */
+
+ if (nin != COHPSK_M)
+ nin = COHPSK_M;
+ }
+
+ coh->rx_timing = rx_timing;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_demod()
+ AUTHOR......: David Rowe
+ DATE CREATED: 5/4/2015
+
+ COHPSK demodulator, takes an array of (nominally) nin_frame =
+ COHPSK_NOM_SAMPLES_PER_FRAME modulated samples, returns an array of
+ COHPSK_BITS_PER_FRAME bits.
+
+ The input signal is complex to support single sided frequency shifting
+ before the demod input (e.g. click to tune feature).
+
+\*---------------------------------------------------------------------------*/
+
+void cohpsk_demod(struct COHPSK *coh, float rx_bits[], int *sync_good, COMP rx_fdm[], int *nin_frame)
+{
+ COMP ch_symb[NSW*NSYMROWPILOT][COHPSK_NC*COHPSK_ND];
+ int i, j, sync, anext_sync, next_sync, nin, r, c;
+ float max_ratio, f_est;
+
+ assert(*nin_frame <= COHPSK_MAX_SAMPLES_PER_FRAME);
+
+ next_sync = sync = coh->sync;
+
+ for (i=0; i<NSW*NSYMROWPILOT*COHPSK_M-*nin_frame; i++)
+ coh->ch_fdm_frame_buf[i] = coh->ch_fdm_frame_buf[i+*nin_frame];
+ //printf("nin_frame: %d i: %d i+nin_frame: %d\n", *nin_frame, i, i+*nin_frame);
+ for (j=0; i<NSW*NSYMROWPILOT*COHPSK_M; i++,j++)
+ coh->ch_fdm_frame_buf[i] = rx_fdm[j];
+ //printf("i: %d j: %d rx_fdm[0]: %f %f\n", i,j, rx_fdm[0].real, rx_fdm[0].imag);
+
+ /* if out of sync do Initial Freq offset estimation using NSW frames to flush out filter memories */
+
+ if (sync == 0) {
+
+ /* we can test +/- 20Hz, so we break this up into 3 tests to cover +/- 60Hz */
+
+ max_ratio = 0.0;
+ f_est = 0.0;
+ for (coh->f_est = FDMDV_FCENTRE-40.0; coh->f_est <= FDMDV_FCENTRE+40.0; coh->f_est += 40.0) {
+
+ if (coh->verbose)
+ fprintf(stderr, " [%d] acohpsk.f_est: %f +/- 20\n", coh->frame, (double)coh->f_est);
+
+ /* we are out of sync so reset f_est and process two frames to clean out memories */
+
+ rate_Fs_rx_processing(coh, ch_symb, coh->ch_fdm_frame_buf, &coh->f_est, NSW*NSYMROWPILOT, COHPSK_M, 0);
+ for (i=0; i<NSW-1; i++) {
+ update_ct_symb_buf(coh->ct_symb_buf, &ch_symb[i*NSYMROWPILOT]);
+ }
+ frame_sync_fine_freq_est(coh, &ch_symb[(NSW-1)*NSYMROWPILOT], sync, &anext_sync);
+
+ if (anext_sync == 1) {
+ //printf(" [%d] acohpsk.ratio: %f\n", f, coh->ratio);
+ if (coh->ratio > max_ratio) {
+ max_ratio = coh->ratio;
+ f_est = coh->f_est - coh->f_fine_est;
+ next_sync = anext_sync;
+ }
+ }
+ }
+
+ if (next_sync == 1) {
+
+ /* we've found a sync candidate!
+ re-process last NSW frames with adjusted f_est then check again */
+
+ coh->f_est = f_est;
+
+ if (coh->verbose)
+ fprintf(stderr, " [%d] trying sync and f_est: %f\n", coh->frame, (double)coh->f_est);
+
+ rate_Fs_rx_processing(coh, ch_symb, coh->ch_fdm_frame_buf, &coh->f_est, NSW*NSYMROWPILOT, COHPSK_M, 0);
+ for (i=0; i<NSW-1; i++) {
+ update_ct_symb_buf(coh->ct_symb_buf, &ch_symb[i*NSYMROWPILOT]);
+ }
+ /*
+ for(i=0; i<NSW*NSYMROWPILOT; i++) {
+ printf("%f %f\n", ch_symb[i][0].real, ch_symb[i][0].imag);
+ }
+ */
+ /*
+ for(i=0; i<NCT_SYMB_BUF; i++) {
+ printf("%f %f\n", coh->ct_symb_buf[i][0].real, coh->ct_symb_buf[i][0].imag);
+ }
+ */
+ frame_sync_fine_freq_est(coh, &ch_symb[(NSW-1)*NSYMROWPILOT], sync, &next_sync);
+
+ if (fabsf(coh->f_fine_est) > 2.0) {
+ if (coh->verbose)
+ fprintf(stderr, " [%d] Hmm %f is a bit big :(\n", coh->frame, (double)coh->f_fine_est);
+ next_sync = 0;
+ }
+ }
+
+ if (next_sync == 1) {
+ /* OK we are in sync!
+ demodulate first frame (demod completed below) */
+
+ if (coh->verbose)
+ fprintf(stderr, " [%d] in sync! f_est: %f ratio: %f \n", coh->frame, (double)coh->f_est, (double)coh->ratio);
+ for(r=0; r<NSYMROWPILOT+2; r++)
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++)
+ coh->ct_symb_ff_buf[r][c] = coh->ct_symb_buf[coh->ct+r][c];
+ }
+ }
+
+ /* If in sync just do sample rate processing on latest frame */
+
+ if (sync == 1) {
+ rate_Fs_rx_processing(coh, ch_symb, rx_fdm, &coh->f_est, NSYMROWPILOT, coh->nin, 1);
+ frame_sync_fine_freq_est(coh, ch_symb, sync, &next_sync);
+
+ for(r=0; r<2; r++)
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++)
+ coh->ct_symb_ff_buf[r][c] = coh->ct_symb_ff_buf[r+NSYMROWPILOT][c];
+ for(; r<NSYMROWPILOT+2; r++)
+ for(c=0; c<COHPSK_NC*COHPSK_ND; c++)
+ coh->ct_symb_ff_buf[r][c] = coh->ct_symb_buf[coh->ct+r][c];
+ }
+
+ /* if we are in sync complete demodulation with symbol rate processing */
+
+ *sync_good = 0;
+ if ((next_sync == 1) || (sync == 1)) {
+ qpsk_symbols_to_bits(coh, rx_bits, coh->ct_symb_ff_buf);
+ *sync_good = 1;
+ }
+
+ sync = sync_state_machine(coh, sync, next_sync);
+ coh->sync = sync;
+
+ /* work out how many samples we need for the next call to account
+ for differences in tx and rx sample clocks */
+
+ nin = COHPSK_M;
+ if (sync == 1) {
+ if (coh->rx_timing > COHPSK_M/P)
+ nin = COHPSK_M + COHPSK_M/P;
+ if (coh->rx_timing < -COHPSK_M/P)
+ nin = COHPSK_M - COHPSK_M/P;
+ }
+ coh->nin = nin;
+ *nin_frame = (NSYMROWPILOT-1)*COHPSK_M + nin;
+ //if (coh->verbose)
+ // fprintf(stderr, "%f %d %d\n", coh->rx_timing, nin, *nin_frame);
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_fs_offset()
+ AUTHOR......: David Rowe
+ DATE CREATED: May 2015
+
+ Simulates small Fs offset between mod and demod.
+
+\*---------------------------------------------------------------------------*/
+
+int cohpsk_fs_offset(COMP out[], COMP in[], int n, float sample_rate_ppm)
+{
+ double f;
+ double tin = 0.0;
+ double step = 1.0 + sample_rate_ppm/1E6;
+ int t1, t2;
+ int tout = 0;
+
+ while (tin < (double) n) {
+ t1 = (int) floor(tin);
+ t2 = (int) ceil(tin);
+ f = tin - (double) t1;
+
+ out[tout].real = ((double)1.0-f)*(double)in[t1].real + f*(double)in[t2].real;
+ out[tout].imag = ((double)1.0-f)*(double)in[t1].imag + f*(double)in[t2].imag;
+
+ tin += step;
+ tout++;
+ //printf("tin: %f tout: %d f: %f\n", tin, tout, f);
+ }
+
+ return tout;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_get_demod_stats()
+ AUTHOR......: David Rowe
+ DATE CREATED: 14 June 2015
+
+ Fills stats structure with a bunch of demod information.
+
+\*---------------------------------------------------------------------------*/
+
+void cohpsk_get_demod_stats(struct COHPSK *coh, struct MODEM_STATS *stats)
+{
+ float new_snr_est;
+
+#ifndef __EMBEDDED__
+ float spi_4 = M_PI/4.0f;
+ COMP pi_4;
+ pi_4.real = cosf(spi_4);
+ pi_4.imag = sinf(spi_4);
+#endif
+
+ stats->Nc = COHPSK_NC*COHPSK_ND;
+ assert(stats->Nc <= MODEM_STATS_NC_MAX);
+ new_snr_est = 20.0f * log10f((coh->sig_rms+1E-6f)/(coh->noise_rms+1E-6f)) - 10.0f*log10f(3000.0f/700.0f);
+ stats->snr_est = 0.9f*stats->snr_est + 0.1f*new_snr_est;
+
+ //fprintf(stderr, "sig_rms: %f noise_rms: %f snr_est: %f\n", coh->sig_rms, coh->noise_rms, stats->snr_est);
+ stats->sync = coh->sync;
+ stats->foff = coh->f_est - FDMDV_FCENTRE;
+ stats->rx_timing = coh->rx_timing;
+ stats->clock_offset = 0.0f; /* TODO - implement clock offset estimation */
+
+#ifndef __EMBEDDED__
+ assert(NSYMROW <= MODEM_STATS_NR_MAX);
+ stats->nr = NSYMROW;
+ for(int c=0; c<COHPSK_NC*COHPSK_ND; c++) {
+ for (int r=0; r<NSYMROW; r++) {
+ stats->rx_symbols[r][c] = cmult(coh->rx_symb[r][c], pi_4);
+ }
+ }
+#endif
+}
+
+
+void cohpsk_set_verbose(struct COHPSK *coh, int verbose)
+{
+ assert(coh != NULL);
+ coh->verbose = verbose;
+}
+
+
+void cohpsk_set_frame(struct COHPSK *coh, int frame)
+{
+ assert(coh != NULL);
+ coh->frame = frame;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_get_test_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: June 2015
+
+ Returns a frame of known test bits.
+
+\*---------------------------------------------------------------------------*/
+
+void cohpsk_get_test_bits(struct COHPSK *coh, int rx_bits[])
+{
+ memcpy(rx_bits, coh->ptest_bits_coh_tx, sizeof(int)*COHPSK_BITS_PER_FRAME);
+ coh->ptest_bits_coh_tx += COHPSK_BITS_PER_FRAME;
+ if (coh->ptest_bits_coh_tx >=coh->ptest_bits_coh_end) {
+ coh->ptest_bits_coh_tx = (int*)test_bits_coh;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: cohpsk_put_test_bits()
+ AUTHOR......: David Rowe
+ DATE CREATED: June 2015
+
+ Accepts bits from demod and attempts to sync with the known
+ test_bits sequence. When synced measures bit errors.
+
+ Has states to track two separate received test sequences based on
+ channel 0 or 1.
+
+\*---------------------------------------------------------------------------*/
+
+void cohpsk_put_test_bits(struct COHPSK *coh, int *state, short error_pattern[],
+ int *bit_errors, char rx_bits_char[], int channel)
+{
+ int i, next_state, anerror;
+ int rx_bits[COHPSK_BITS_PER_FRAME];
+
+ assert((channel == 0) || (channel == 1));
+ int *ptest_bits_coh_rx = coh->ptest_bits_coh_rx[channel];
+
+ for(i=0; i<COHPSK_BITS_PER_FRAME; i++) {
+ rx_bits[i] = rx_bits_char[i];
+ }
+
+ *bit_errors = 0;
+ for(i=0; i<COHPSK_BITS_PER_FRAME; i++) {
+ anerror = (rx_bits[i] & 0x1) ^ ptest_bits_coh_rx[i];
+ if ((anerror < 0) || (anerror > 1)) {
+ fprintf(stderr, "i: %d rx_bits: %d ptest_bits_coh_rx: %d\n", i, rx_bits[i], ptest_bits_coh_rx[i]);
+ }
+ *bit_errors += anerror;
+ error_pattern[i] = anerror;
+ }
+
+ /* state logic */
+
+ next_state = *state;
+
+ if (*state == 0) {
+ if (*bit_errors < 4) {
+ next_state = 1;
+ ptest_bits_coh_rx += COHPSK_BITS_PER_FRAME;
+ if (ptest_bits_coh_rx >= coh->ptest_bits_coh_end) {
+ ptest_bits_coh_rx = (int*)test_bits_coh;
+ }
+ }
+ }
+
+ /* if 5 frames with large BER reset test frame sync */
+
+ if (*state > 0) {
+ if (*bit_errors > 8) {
+ if (*state == 6)
+ next_state = 0;
+ else
+ next_state = *state+1;
+ }
+ else
+ next_state = 1;
+ }
+
+ if (*state > 0) {
+ ptest_bits_coh_rx += COHPSK_BITS_PER_FRAME;
+ if (ptest_bits_coh_rx >= coh->ptest_bits_coh_end) {
+ ptest_bits_coh_rx = (int*)test_bits_coh;
+ }
+ }
+
+ //fprintf(stderr, "state: %d next_state: %d bit_errors: %d\n", *state, next_state, *bit_errors);
+
+ *state = next_state;
+ coh->ptest_bits_coh_rx[channel] = ptest_bits_coh_rx;
+}
+
+
+int cohpsk_error_pattern_size(void) {
+ return COHPSK_BITS_PER_FRAME;
+}
+
+
+float *cohpsk_get_rx_bits_lower(struct COHPSK *coh) {
+ return coh->rx_bits_lower;
+}
+
+float *cohpsk_get_rx_bits_upper(struct COHPSK *coh) {
+ return coh->rx_bits_upper;
+}
+
+void cohpsk_set_carrier_ampl(struct COHPSK *coh, int c, float ampl) {
+ assert(c < COHPSK_NC*COHPSK_ND);
+ coh->carrier_ampl[c] = ampl;
+ fprintf(stderr, "cohpsk_set_carrier_ampl: %d %f\n", c, (double)ampl);
+}