1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
% cohpsk_dev.m
% David Rowe Mar 2015
%
% Coherent PSK modem development and testing functions
%
cohpsk_lib;
% Init HF channel model from stored sample files of spreading signal ----------------------------------
function [spread spread_2ms hf_gain] = init_hf_model(Fs, nsam)
% convert "spreading" samples from 1kHz carrier at Fss to complex
% baseband, generated by passing a 1kHz sine wave through PathSim
% with the ccir-poor model, enabling one path at a time.
Fc = 1000; Fss = 8000;
fspread = fopen("../raw/sine1k_2Hz_spread.raw","rb");
spread1k = fread(fspread, "int16")/10000;
fclose(fspread);
fspread = fopen("../raw/sine1k_2ms_delay_2Hz_spread.raw","rb");
spread1k_2ms = fread(fspread, "int16")/10000;
fclose(fspread);
% down convert to complex baseband
spreadbb = spread1k.*exp(-j*(2*pi*Fc/Fss)*(1:length(spread1k))');
spreadbb_2ms = spread1k_2ms.*exp(-j*(2*pi*Fc/Fss)*(1:length(spread1k_2ms))');
% remove -2000 Hz image
b = fir1(50, 5/Fss);
spread = filter(b,1,spreadbb);
spread_2ms = filter(b,1,spreadbb_2ms);
% discard first 1000 samples as these were near 0, probably as
% PathSim states were ramping up
spread = spread(1000:length(spread));
spread_2ms = spread_2ms(1000:length(spread_2ms));
% change output samples so they are at rate Fs reqd by caller
spread = resample(spread, Fs, Fss);
spread_2ms = resample(spread_2ms, Fs, Fss);
% Determine "gain" of HF channel model, so we can normalise
% carrier power during HF channel sim to calibrate SNR. I imagine
% different implementations of ccir-poor would do this in
% different ways, leading to different BER results. Oh Well!
hf_gain = 1.0/sqrt(var(spread(1:nsam))+var(spread_2ms(1:nsam)));
endfunction
function write_pilot_file(pilot, Nsymbrowpilot, Ns, Nsymrow, Npilotsframe, Nc);
filename = sprintf("../src/cohpsk_defs.h", Npilotsframe, Nc);
f=fopen(filename,"wt");
fprintf(f,"/* Generated by write_pilot_file() Octave function */\n\n");
fprintf(f,"#define NSYMROW %d /* number of data symbols on each row (i.e. each carrier) */\n", Nsymrow);
fprintf(f,"#define NS %d /* number of data symbols between pilots */\n", Ns);
fprintf(f,"#define NPILOTSFRAME %d /* number of pilot symbols on each row */\n", Npilotsframe);
fprintf(f,"#define PILOTS_NC %d /* number of carriers */\n\n", Nc);
fprintf(f,"#define NSYMROWPILOT %d /* length of row after pilots inserted */\n\n", Nsymbrowpilot);
fclose(f);
filename = sprintf("../src/pilots_coh.h", Npilotsframe, Nc);
f=fopen(filename,"wt");
fprintf(f,"/* Generated by write_pilot_file() Octave function */\n\n");
fprintf(f,"float pilots_coh[][PILOTS_NC]={\n");
for r=1:Npilotsframe
fprintf(f, " {");
for c=1:Nc-1
fprintf(f, " %f,", pilot(r, c));
end
if r < Npilotsframe
fprintf(f, " %f},\n", pilot(r, Nc));
else
fprintf(f, " %f}\n};", pilot(r, Nc));
end
end
fclose(f);
endfunction
% Save test bits frame to a text file in the form of a C array
function test_bits_coh_file(test_bits_coh)
f=fopen("../src/test_bits_coh.h","wt");
fprintf(f,"/* Generated by test_bits_coh_file() Octave function */\n\n");
fprintf(f,"const int test_bits_coh[]={\n");
for m=1:length(test_bits_coh)-1
fprintf(f," %d,\n",test_bits_coh(m));
endfor
fprintf(f," %d\n};\n",test_bits_coh(length(test_bits_coh)));
fclose(f);
endfunction
% Rate Rs BER tests ------------------------------------------------------------------------------
function sim_out = ber_test(sim_in)
sim_in = symbol_rate_init(sim_in);
Fs = sim_in.Fs;
Rs = sim_in.Rs;
Ntrials = sim_in.Ntrials;
verbose = sim_in.verbose;
plot_scatter = sim_in.plot_scatter;
framesize = sim_in.framesize;
bps = sim_in.bps;
Esvec = sim_in.Esvec;
ldpc_code = sim_in.ldpc_code;
rate = sim_in.ldpc_code_rate;
code_param = sim_in.code_param;
tx_bits_buf = sim_in.tx_bits_buf;
Nsymb = sim_in.Nsymb;
Nsymbrow = sim_in.Nsymbrow;
Nsymbrowpilot = sim_in.Nsymbrowpilot;
Nc = sim_in.Nc;
Npilotsframe = sim_in.Npilotsframe;
Ns = sim_in.Ns;
Np = sim_in.Np;
Nd = sim_in.Nd;
modulation = sim_in.modulation;
pilot = sim_in.pilot;
prev_sym_tx = sim_in.prev_sym_tx;
prev_sym_rx = sim_in.prev_sym_rx;
rx_symb_buf = sim_in.rx_symb_buf;
tx_pilot_buf = sim_in.tx_pilot_buf;
rx_pilot_buf = sim_in.rx_pilot_buf;
hf_sim = sim_in.hf_sim;
nhfdelay = sim_in.hf_delay_ms*Rs/1000;
hf_mag_only = sim_in.hf_mag_only;
f_off = sim_in.f_off;
div_time_shift = sim_in.div_timeshift;
[spread spread_2ms hf_gain] = init_hf_model(Rs, Nsymbrowpilot*(Ntrials+2));
if strcmp(modulation,'dqpsk')
Nsymbrowpilot = Nsymbrow;
end
% Start Simulation ----------------------------------------------------------------
for ne = 1:length(Esvec)
EsNodB = Esvec(ne);
EsNo = 10^(EsNodB/10);
variance = 1/EsNo;
if verbose > 1
printf("EsNo (dB): %f EsNo: %f variance: %f\n", EsNodB, EsNo, variance);
end
Terrs = 0; Tbits = 0;
s_ch_tx_log = [];
rx_symb_log = [];
noise_log = [];
errors_log = [];
Nerrs_log = [];
phi_log = [];
amp_log = [];
EsNo__log = [];
ldpc_errors_log = []; ldpc_Nerrs_log = [];
Terrsldpc = Tbitsldpc = Ferrsldpc = 0;
% init HF channel
hf_n = 1;
phase_offset_rect = 1;
w_offset = 2*pi*f_off/Rs;
w_offset_rect = exp(j*w_offset);
ct_symb_buf = zeros(2*Nsymbrowpilot, Nc*Nd);
prev_tx_symb = prev_rx_symb = ones(1, Nc*Nd);
% simulation starts here-----------------------------------
for nn = 1:Ntrials+2
if ldpc_code
tx_bits = round(rand(1,framesize*rate));
else
tx_bits = round(rand(1,framesize));
end
if strcmp(modulation,'qpsk')
[tx_symb tx_bits] = bits_to_qpsk_symbols(sim_in, tx_bits, code_param);
% one frame delay on bits for qpsk
tx_bits_buf(1:framesize) = tx_bits_buf(framesize+1:2*framesize);
tx_bits_buf(framesize+1:2*framesize) = tx_bits;
end
if strcmp(modulation, 'dqpsk')
[tx_symb prev_tx_symb] = bits_to_dqpsk_symbols(sim_in, tx_bits, prev_tx_symb);
tx_bits_buf(1:framesize) = tx_bits;
end
s_ch = tx_symb;
% HF channel simulation ------------------------------------
hf_fading = ones(1,Nsymb);
if hf_sim
% separation between carriers. Note this effectively
% under samples at Rs, I dont think this matters.
% Equivalent to doing freq shift at Fs, then
% decimating to Rs.
wsep = 2*pi*(1+0.5); % e.g. 75Hz spacing at Rs=50Hz, alpha=0.5 filters
hf_model(hf_n, :) = zeros(1,Nc*Nd);
for r=1:Nsymbrowpilot
for c=1:Nd*Nc
if c > Nc
time_shift = sim_in.div_timeshift;
else
time_shift = 1;
end
ahf_model = hf_gain*(spread(hf_n+time_shift) + exp(-j*c*wsep*nhfdelay)*spread_2ms(hf_n+time_shift));
if hf_mag_only
s_ch(r,c) *= abs(ahf_model);
else
s_ch(r,c) *= ahf_model;
end
hf_model(hf_n, c) = ahf_model;
end
hf_n++;
end
end
% keep a record of each tx symbol so we can check average power
for r=1:Nsymbrow
for c=1:Nd*Nc
s_ch_tx_log = [s_ch_tx_log s_ch(r,c)];
end
end
% AWGN noise and phase/freq offset channel simulation
% 0.5 factor ensures var(noise) == variance , i.e. splits power between Re & Im
noise = sqrt(variance*0.5)*(randn(Nsymbrowpilot,Nc*Nd) + j*randn(Nsymbrowpilot,Nc*Nd));
noise_log = [noise_log noise];
for r=1:Nsymbrowpilot
s_ch(r,:) *= phase_offset_rect;
phase_offset_rect *= w_offset_rect;
end
s_ch += noise;
ct_symb_buf(1:Nsymbrowpilot,:) = ct_symb_buf(Nsymbrowpilot+1:2*Nsymbrowpilot,:);
ct_symb_buf(Nsymbrowpilot+1:2*Nsymbrowpilot,:) = s_ch;
if strcmp(modulation,'qpsk')
[rx_symb rx_bits rx_symb_linear amp_ phi_ sig_rms noise_rms sim_in] = qpsk_symbols_to_bits(sim_in, ct_symb_buf(1:Nsymbrowpilot+Npilotsframe,:));
phi_log = [phi_log; phi_];
amp_log = [amp_log; amp_];
end
if strcmp(modulation,'dqpsk')
[rx_symb rx_bits rx_symb_linear prev_rx_symb] = dqpsk_symbols_to_bits(sim_in, s_ch, prev_rx_symb);
end
% Wait until we have enough frames to do pilot assisted phase estimation
if nn > 1
rx_symb_log = [rx_symb_log rx_symb_linear];
%EsNo__log = [EsNo__log EsNo_];
% Measure BER
error_positions = xor(rx_bits, tx_bits_buf(1:framesize));
Nerrs = sum(error_positions);
Terrs += Nerrs;
Tbits += length(tx_bits);
errors_log = [errors_log error_positions];
Nerrs_log = [Nerrs_log Nerrs];
% Optionally LDPC decode
if ldpc_code
detected_data = ldpc_dec(code_param, sim_in.max_iterations, sim_in.demod_type, sim_in.decoder_type, ...
rx_symb_linear, min(100,EsNo_), amp_linear);
error_positions = xor( detected_data(1:framesize*rate), tx_bits_buf(1:framesize*rate) );
Nerrs = sum(error_positions);
ldpc_Nerrs_log = [ldpc_Nerrs_log Nerrs];
ldpc_errors_log = [ldpc_errors_log error_positions];
if Nerrs
Ferrsldpc++;
end
Terrsldpc += Nerrs;
Tbitsldpc += framesize*rate;
end
end
end
TERvec(ne) = Terrs;
BERvec(ne) = Terrs/Tbits;
if verbose
av_tx_pwr = (s_ch_tx_log * s_ch_tx_log')/length(s_ch_tx_log);
printf("EsNo (dB): %3.1f Terrs: %d Tbits: %d BER %5.3f QPSK BER theory %5.3f av_tx_pwr: %3.2f",
EsNodB, Terrs, Tbits,
Terrs/Tbits, 0.5*erfc(sqrt(EsNo/2)), av_tx_pwr);
if ldpc_code
printf("\n LDPC: Terrs: %d BER: %4.2f Ferrs: %d FER: %4.2f",
Terrsldpc, Terrsldpc/Tbitsldpc, Ferrsldpc, Ferrsldpc/Ntrials);
end
printf("\n");
end
end
Ebvec = Esvec - 10*log10(bps);
sim_out.BERvec = BERvec;
sim_out.Ebvec = Ebvec;
sim_out.TERvec = TERvec;
sim_out.errors_log = errors_log;
sim_out.ldpc_errors_log = ldpc_errors_log;
if plot_scatter
figure(2);
clf;
scat = rx_symb_log .* exp(j*pi/4);
plot(real(scat), imag(scat),'+');
title('Scatter plot');
a = 1.5*max(real(scat)); b = 1.5*max(imag(scat));
axis([-a a -b b]);
if hf_sim
figure(3);
clf;
y = 1:(hf_n-1);
x = 1:Nc*Nd;
EsNodBSurface = 20*log10(abs(hf_model(y,:))) - 10*log10(variance);
EsNodBSurface(find(EsNodBSurface < -5)) = -5;
EsNodBSurface(find(EsNodBSurface > 25)) = 25;
mesh(x,y,EsNodBSurface);
grid
axis([1 Nc*Nd 1 Rs*5 -5 25])
title('HF Channel Es/No');
if verbose
[m n] = size(hf_model);
av_hf_pwr = sum(sum(abs(hf_model(:,:)).^2))/(m*n);
printf("average HF power: %3.2f over %d symbols\n", av_hf_pwr, m*n);
end
end
if strcmp(modulation,'qpsk')
% set up time axis to include gaps for pilots
[m1 n1] = size(phi_log);
phi_x = [];
phi_x_counter = 1;
p = Ns;
for r=1:m1
if p == Ns
phi_x_counter += Npilotsframe;
p = 0;
end
p++;
phi_x = [phi_x phi_x_counter++];
end
phi_x -= Nsymbrowpilot; % account for delay in pilot buffer
figure(5);
clf
subplot(211)
[m n] = size(phi_log);
plot(phi_x, phi_log(:,2),'r+;Estimated HF channel phase;')
if hf_sim
hold on;
[m n] = size(hf_model);
plot(angle(hf_model(1:m,2)),'g;HF channel phase;')
hold off;
end
ylabel('Phase (rads)');
legend('boxoff');
axis([1 m -1.1*pi 1.1*pi])
subplot(212)
plot(phi_x, amp_log(:,2),'r+;Estimated HF channel amp;')
if hf_sim
hold on;
plot(abs(hf_model(1:m,2)))
hold off;
end
ylabel('Amplitude');
xlabel('Time (symbols)');
legend('boxoff');
axis([1 m 0 3])
end
figure(4)
clf
stem(Nerrs_log)
axis([1 length(Nerrs_log) 0 max(Nerrs_log)+1])
end
endfunction
function sim_in = standard_init
sim_in.verbose = 1;
sim_in.do_write_pilot_file = 0;
sim_in.plot_scatter = 0;
sim_in.Esvec = 50;
sim_in.Ntrials = 30;
sim_in.framesize = 2;
sim_in.Rs = 50;
sim_in.phase_offset = 0;
sim_in.w_offset = 0;
sim_in.phase_noise_amp = 0;
sim_in.hf_delay_ms = 2;
sim_in.hf_sim = 0;
sim_in.hf_mag_only = 0;
sim_in.Nd = 1;
endfunction
|