1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
% cohpsk_lib.m
% David Rowe Mar 2015
%
% Coherent PSK modem functions
%
1;
% Gray coded QPSK modulation function
function symbol = qpsk_mod(two_bits)
two_bits_decimal = sum(two_bits .* [2 1]);
switch(two_bits_decimal)
case (0) symbol = 1;
case (1) symbol = j;
case (2) symbol = -j;
case (3) symbol = -1;
endswitch
endfunction
% Gray coded QPSK demodulation function
function two_bits = qpsk_demod(symbol)
if isscalar(symbol) == 0
printf("only works with scalars\n");
return;
end
bit0 = real(symbol*exp(j*pi/4)) < 0;
bit1 = imag(symbol*exp(j*pi/4)) < 0;
two_bits = [bit1 bit0];
endfunction
% init function for symbol rate processing --------------------------------------------------------
function sim_in = symbol_rate_init(sim_in)
sim_in.Fs = Fs = 8000;
modulation = sim_in.modulation;
verbose = sim_in.verbose;
framesize = sim_in.framesize;
Ntrials = sim_in.Ntrials;
Esvec = sim_in.Esvec;
phase_offset = sim_in.phase_offset;
w_offset = sim_in.w_offset;
plot_scatter = sim_in.plot_scatter;
Rs = sim_in.Rs;
Nc = sim_in.Nc;
hf_sim = sim_in.hf_sim;
nhfdelay = sim_in.hf_delay_ms*Rs/1000;
hf_mag_only = sim_in.hf_mag_only;
Nd = sim_in.Nd; % diveristy
Ns = sim_in.Ns; % step size between pilots
ldpc_code = sim_in.ldpc_code;
rate = sim_in.ldpc_code_rate;
sim_in.bps = bps = 2;
sim_in.Nsymb = Nsymb = framesize/bps;
sim_in.Nsymbrow = Nsymbrow = Nsymb/Nc;
sim_in.Npilotsframe = Npilotsframe = 2;
sim_in.Nsymbrowpilot = Nsymbrowpilot = Nsymbrow + Npilotsframe;
if verbose == 2
printf("Each frame contains %d data bits or %d data symbols, transmitted as %d symbols by %d carriers.", framesize, Nsymb, Nsymbrow, Nc);
printf(" There are %d pilot symbols in each carrier together at the start of each frame, then %d data symbols.", Npilotsframe, Ns);
printf(" Including pilots, the frame is %d symbols long by %d carriers.\n\n", Nsymbrowpilot, Nc);
end
sim_in.prev_sym_tx = qpsk_mod([0 0])*ones(1,Nc*Nd);
sim_in.prev_sym_rx = qpsk_mod([0 0])*ones(1,Nc*Nd);
sim_in.rx_symb_buf = zeros(3*Nsymbrow, Nc*Nd);
sim_in.rx_pilot_buf = zeros(3*Npilotsframe,Nc*Nd);
sim_in.tx_bits_buf = zeros(1,2*framesize);
% pilot sequence is used for phase and amplitude estimation, and frame sync
pilot = 1 - 2*(rand(Npilotsframe,Nc) > 0.5);
sim_in.pilot = pilot;
sim_in.tx_pilot_buf = [pilot; pilot; pilot];
if sim_in.do_write_pilot_file
write_pilot_file(pilot, Nsymbrowpilot, Ns, Nsymbrow, Npilotsframe, Nc);
end
% we use first 2 pilots of next frame to help with frame sync and fine freq
sim_in.Nct_sym_buf = 2*Nsymbrowpilot + 2;
sim_in.ct_symb_buf = zeros(sim_in.Nct_sym_buf, Nc*Nd);
sim_in.ff_phase = 1;
sim_in.ct_symb_ff_buf = zeros(Nsymbrowpilot + 2, Nc*Nd);
% Init LDPC --------------------------------------------------------------------
if ldpc_code
% Start CML library
currentdir = pwd;
addpath '~/cml/mat' % assume the source files stored here
cd ~/cml
CmlStartup % note that this is not in the cml path!
cd(currentdir)
% Our LDPC library
ldpc;
mod_order = 4;
modulation2 = 'QPSK';
mapping = 'gray';
sim_in.demod_type = 0;
sim_in.decoder_type = 0;
sim_in.max_iterations = 100;
code_param = ldpc_init(rate, framesize, modulation2, mod_order, mapping);
code_param.code_bits_per_frame = framesize;
code_param.symbols_per_frame = framesize/bps;
sim_in.code_param = code_param;
else
sim_in.rate = 1;
sim_in.code_param = [];
end
endfunction
% Symbol rate processing for tx side (modulator) -------------------------------------------------------
% legacy DQPSK mod for comparative testing
function [tx_symb prev_tx_symb] = bits_to_dqpsk_symbols(sim_in, tx_bits, prev_tx_symb)
Nc = sim_in.Nc;
Nsymbrow = sim_in.Nsymbrow;
tx_symb = zeros(Nsymbrow,Nc);
for c=1:Nc
for r=1:Nsymbrow
i = (c-1)*Nsymbrow + r;
tx_symb(r,c) = qpsk_mod(tx_bits(2*(i-1)+1:2*i));
tx_symb(r,c) *= prev_tx_symb(c);
prev_tx_symb(c) = tx_symb(r,c);
end
end
endfunction
% legacy DQPSK demod for comparative testing
function [rx_symb rx_bits rx_symb_linear prev_rx_symb] = dqpsk_symbols_to_bits(sim_in, rx_symb, prev_rx_symb)
Nc = sim_in.Nc;
Nsymbrow = sim_in.Nsymbrow;
tx_symb = zeros(Nsymbrow,Nc);
for c=1:Nc
for r=1:Nsymbrow
tmp = rx_symb(r,c);
rx_symb(r,c) *= conj(prev_rx_symb(c))/abs(prev_rx_symb(c));
prev_rx_symb(c) = tmp;
i = (c-1)*Nsymbrow + r;
rx_symb_linear(i) = rx_symb(r,c);
rx_bits((2*(i-1)+1):(2*i)) = qpsk_demod(rx_symb(r,c));
end
end
endfunction
function [tx_symb tx_bits] = bits_to_qpsk_symbols(sim_in, tx_bits, code_param)
ldpc_code = sim_in.ldpc_code;
rate = sim_in.ldpc_code_rate;
framesize = sim_in.framesize;
Nsymbrow = sim_in.Nsymbrow;
Nsymbrowpilot = sim_in.Nsymbrowpilot;
Nc = sim_in.Nc;
Npilotsframe = sim_in.Npilotsframe;
Ns = sim_in.Ns;
modulation = sim_in.modulation;
pilot = sim_in.pilot;
Nd = sim_in.Nd;
if ldpc_code
[tx_bits, tmp] = ldpc_enc(tx_bits, code_param);
end
% modulate --------------------------------------------
% organise symbols into a Nsymbrow rows by Nc cols
% data and parity bits are on separate carriers
tx_symb = zeros(Nsymbrow,Nc);
for c=1:Nc
for r=1:Nsymbrow
i = (c-1)*Nsymbrow + r;
tx_symb(r,c) = qpsk_mod(tx_bits(2*(i-1)+1:2*i));
end
end
% insert pilots at start of frame
tx_symb = [pilot(1,:); pilot(2,:); tx_symb;];
% copy to other carriers (diversity)
tmp = tx_symb;
for d=1:Nd-1
tmp = [tmp tx_symb];
end
tx_symb = tmp;
% ensures energy/symbol is normalised with diversity
tx_symb = tx_symb/sqrt(Nd);
endfunction
% Symbol rate processing for rx side (demodulator) -------------------------------------------------------
function [rx_symb rx_bits rx_symb_linear amp_ phi_ sig_rms noise_rms cohpsk] = qpsk_symbols_to_bits(cohpsk, ct_symb_buf)
framesize = cohpsk.framesize;
Nsymb = cohpsk.Nsymb;
Nsymbrow = cohpsk.Nsymbrow;
Nsymbrowpilot = cohpsk.Nsymbrowpilot;
Nc = cohpsk.Nc;
Nd = cohpsk.Nd;
Npilotsframe = cohpsk.Npilotsframe;
pilot = cohpsk.pilot;
verbose = cohpsk.verbose;
coh_en = cohpsk.coh_en;
% Use pilots to get phase and amplitude estimates We assume there
% are two samples at the start of each frame and two at the end
% Note: correlation (averging) method was used initially, but was
% poor at tracking fast phase changes that we experience on fading
% channels. Linear regression (fitting a straight line) works
% better on fading channels, but increases BER slightly for AWGN
% channels.
sampling_points = [1 2 cohpsk.Nsymbrow+3 cohpsk.Nsymbrow+4];
pilot2 = [cohpsk.pilot(1,:); cohpsk.pilot(2,:); cohpsk.pilot(1,:); cohpsk.pilot(2,:);];
phi_ = zeros(Nsymbrow, Nc*Nd);
amp_ = zeros(Nsymbrow, Nc*Nd);
for c=1:Nc*Nd
y = ct_symb_buf(sampling_points,c) .* pilot2(:,c-Nc*floor((c-1)/Nc));
[m b] = linreg(sampling_points, y, length(sampling_points));
yfit = m*[3 4 5 6] + b;
phi_(:, c) = angle(yfit);
mag = sum(abs(ct_symb_buf(sampling_points,c)));
amp_(:, c) = mag/length(sampling_points);
end
% now correct phase of data symbols
rx_symb = zeros(Nsymbrow, Nc);
rx_symb_linear = zeros(1, Nsymbrow*Nc*Nd);
rx_bits = zeros(1, framesize);
for c=1:Nc*Nd
for r=1:Nsymbrow
if coh_en == 1
rx_symb(r,c) = ct_symb_buf(2+r,c)*exp(-j*phi_(r,c));
else
rx_symb(r,c) = ct_symb_buf(2+r,c);
end
i = (c-1)*Nsymbrow + r;
rx_symb_linear(i) = rx_symb(r,c);
end
end
% and finally optional diversity combination and make decn on bits
for c=1:Nc
for r=1:Nsymbrow
i = (c-1)*Nsymbrow + r;
div_symb = rx_symb(r,c);
for d=1:Nd-1
div_symb += rx_symb(r,c + Nc*d);
end
rx_bits((2*(i-1)+1):(2*i)) = qpsk_demod(div_symb);
end
end
% Estimate noise power from demodulated symbols. One method is to
% calculate the distance of each symbol from the average symbol
% position. However this is complicated by fading, which means the
% amplitude of the symbols is constantly changing.
% Now the scatter diagram in a fading channel is a X or cross
% shape. The noise can be resolved into two components at right
% angles to each other. The component along the the "thickness"
% of the arms is proportional to the noise power and not affected
% by fading. We only use points further along the real axis than
% the mean amplitude so we keep out of the central nosiey blob
sig_rms = mean(abs(rx_symb_linear));
sum_x = 0;
sum_xx = 0;
n = 0;
for i=1:Nsymb*Nd
s = rx_symb_linear(i);
if abs(real(s)) > sig_rms
sum_x += imag(s);
sum_xx += imag(s)*imag(s);
n++;
end
end
noise_var = 0;
if n > 1
noise_var = (n*sum_xx - sum_x*sum_x)/(n*(n-1));
end
noise_rms = sqrt(noise_var);
endfunction
function [ch_symb rx_timing rx_filt rx_baseband afdmdv f_est] = rate_Fs_rx_processing(afdmdv, ch_fdm_frame, f_est, nsymb, nin, freq_track)
M = afdmdv.M;
rx_baseband = [];
rx_filt = [];
rx_timing = [];
ch_fdm_frame_index = 1;
for r=1:nsymb
% shift signal to nominal baseband, this will put Nc/2 carriers either side of 0 Hz
[rx_fdm_frame_bb afdmdv.fbb_phase_rx] = freq_shift(ch_fdm_frame(ch_fdm_frame_index:ch_fdm_frame_index + nin - 1), -f_est, afdmdv.Fs, afdmdv.fbb_phase_rx);
ch_fdm_frame_index += nin;
% downconvert each FDM carrier to Nc separate baseband signals
[arx_baseband afdmdv] = fdm_downconvert(afdmdv, rx_fdm_frame_bb, nin);
[arx_filt afdmdv] = rx_filter(afdmdv, arx_baseband, nin);
[rx_onesym arx_timing env afdmdv] = rx_est_timing(afdmdv, arx_filt, nin);
rx_baseband = [rx_baseband arx_baseband];
rx_filt = [rx_filt arx_filt];
rx_timing = [rx_timing arx_timing];
ch_symb(r,:) = rx_onesym;
% we only allow a timing shift on one symbol per frame
if nin != M
nin = M;
end
% freq tracking, see test_ftrack.m for unit test. Placed in
% this function as it needs to work on a symbol by symbol basis
% rather than frame by frame. This means the control loop
% operates at a sample rate of Rs = 50Hz for say 1 Hz/s drift.
if freq_track
beta = 0.005;
g = 0.2;
% combine difference on phase from last symbol over Nc carriers
mod_strip = 0;
for c=1:afdmdv.Nc+1
adiff = rx_onesym(c) .* conj(afdmdv.prev_rx_symb(c));
afdmdv.prev_rx_symb(c) = rx_onesym(c);
% 4th power strips QPSK modulation, by multiplying phase by 4
% Using the abs value of the real coord was found to help
% non-linear issues when noise power was large
amod_strip = adiff.^4;
amod_strip = abs(real(amod_strip)) + j*imag(amod_strip);
mod_strip += amod_strip;
end
% loop filter made up of 1st order IIR plus integrator. Integerator
% was found to be reqd
afdmdv.filt = (1-beta)*afdmdv.filt + beta*angle(mod_strip);
f_est += g*afdmdv.filt;
end
end
endfunction
function ct_symb_buf = update_ct_symb_buf(ct_symb_buf, ch_symb, Nct_sym_buf, Nsymbrowpilot)
% update memory in symbol buffer
for r=1:Nct_sym_buf-Nsymbrowpilot
ct_symb_buf(r,:) = ct_symb_buf(r+Nsymbrowpilot,:);
end
i = 1;
for r=Nct_sym_buf-Nsymbrowpilot+1:Nct_sym_buf
ct_symb_buf(r,:) = ch_symb(i,:);
i++;
end
endfunction
% returns index of start of frame and fine freq offset
function [next_sync cohpsk] = frame_sync_fine_freq_est(cohpsk, ch_symb, sync, next_sync)
ct_symb_buf = cohpsk.ct_symb_buf;
Nct_sym_buf = cohpsk.Nct_sym_buf;
Rs = cohpsk.Rs;
Nsymbrowpilot = cohpsk.Nsymbrowpilot;
Nc = cohpsk.Nc;
Nd = cohpsk.Nd;
ct_symb_buf = update_ct_symb_buf(ct_symb_buf, ch_symb, Nct_sym_buf, Nsymbrowpilot);
cohpsk.ct_symb_buf = ct_symb_buf;
% sample pilots at start of this frame and start of next frame
sampling_points = [1 2 cohpsk.Nsymbrow+3 cohpsk.Nsymbrow+4];
pilot2 = [ cohpsk.pilot(1,:); cohpsk.pilot(2,:); cohpsk.pilot(1,:); cohpsk.pilot(2,:);];
if sync == 0
% sample correlation over 2D grid of time and fine freq points
max_corr = 0;
for f_fine=-20:0.25:20
f_fine_rect = exp(-j*f_fine*2*pi*sampling_points/Rs)'; % note: this could be pre-computed at init or compile time
for t=0:cohpsk.Nsymbrowpilot-1
corr = 0; mag = 0;
for c=1:Nc*Nd
f_corr_vec = f_fine_rect .* ct_symb_buf(t+sampling_points,c); % note: this could be pre-computed at init or compile time
acorr = 0.0;
for p=1:length(sampling_points)
acorr += pilot2(p,c-Nc*floor((c-1)/Nc)) * f_corr_vec(p);
mag += abs(f_corr_vec(p));
end
corr += abs(acorr);
end
if corr >= max_corr
max_corr = corr;
max_mag = mag;
cohpsk.ct = t;
cohpsk.f_fine_est = f_fine;
cohpsk.ff_rect = exp(-j*f_fine*2*pi/Rs);
end
end
end
printf(" [%d] fine freq f: %f max_ratio: %f ct: %d\n", cohpsk.frame, cohpsk.f_fine_est, abs(max_corr)/max_mag, cohpsk.ct);
if abs(max_corr/max_mag) > 0.9
printf(" [%d] encouraging sync word! ratio: %f\n", cohpsk.frame, abs(max_corr/max_mag));
cohpsk.sync_timer = 0;
next_sync = 1;
else
next_sync = 0;
end
cohpsk.ratio = abs(max_corr/max_mag);
end
% single point correlation just to see if we are still in sync
if sync == 1
corr = 0; mag = 0;
f_fine_rect = exp(-j*cohpsk.f_fine_est*2*pi*sampling_points/Rs)';
for c=1:Nc*Nd
f_corr_vec = f_fine_rect .* ct_symb_buf(cohpsk.ct+sampling_points,c);
acorr = 0;
for p=1:length(sampling_points)
acorr += pilot2(p, c-Nc*floor((c-1)/Nc)) * f_corr_vec(p);
mag += abs(f_corr_vec(p));
end
corr += abs(acorr);
end
cohpsk.ratio = abs(corr)/mag;
end
endfunction
% misc sync state machine code, just wanted it in a function
function [sync cohpsk] = sync_state_machine(cohpsk, sync, next_sync)
if sync == 1
% check that sync is still good, fall out of sync on consecutive bad frames */
if cohpsk.ratio < 0.8
cohpsk.sync_timer++;
else
cohpsk.sync_timer = 0;
end
if cohpsk.sync_timer == 10
printf(" [%d] lost sync ....\n", cohpsk.frame);
next_sync = 0;
end
end
sync = next_sync;
endfunction
|