aboutsummaryrefslogtreecommitdiff
path: root/octave/fsk4_dmr.m
blob: e6ccb7ab337f4735dcc4c768d7edbf4eb1740949 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
% fsk4.m
%
% Brady O'Brien October 2015
%
% 4FSK modem attempt from the DMR spec

graphics_toolkit("gnuplot");

fm; % analog FM modulator functions

pkg load signal;

% Init function for modem ------------------------------------------------------------

function fsk4_states = fsk4_init(fsk4_states,fsk4_info)
    Fs = fsk4_states.Fs = 48000;  %Sample rate
    Rs = fsk4_states.Rs = fsk4_info.rs;     %Symbol rate
    M = fsk4_states.M = fsk4_states.Fs/fsk4_states.Rs; %Samples per symbol
    
    % Set up 4FSK raised cosine filter. This probably screws up perf if we were using
    % optimal mod and dmeods but helps performance when using nasty old analog FM mods
    % and demods

    empty_filter = [zeros(1,99) 1];

    rf = (0:(Fs/2));
    %If there's no filter with this modem configuration, don't bother generating one
    if fsk4_info.no_filter
      fsk4_states.tx_filter = empty_filter;
      fsk4_states.rx_filter = empty_filter;
    else
      fsk4_states.tx_filter = fir2(400 ,rf/(Fs/2),fsk4_info.tx_filt_resp(rf));
      fsk4_states.rx_filter = fir2(400 ,rf/(Fs/2),fsk4_info.rx_filt_resp(rf));
    endif

    %fsk4_states.tx_filter = fsk4_states.rx_filter = [zeros(1,99) 1];
    %Set up the 4FSK symbols
    fsk4_states.symmap = fsk4_info.syms / fsk4_info.max_dev;
    
    fm_states.Ts = M;
    fm_states.Fs = Fs;
    fm_states.fc = 0;
    fm_states.fm_max = fsk4_info.max_dev*2;
    fm_states.fd = fsk4_info.max_dev;
    fm_states.pre_emp = fm_states.de_emp = 0;
    fm_states.output_filter = 0;
    fm_states.ph_dont_limit = 1;
    fsk4_states.fm_states = analog_fm_init(fm_states);
    fsk4_states.modinfo = fsk4_info;
    fsk4_states.verbose = 0;
endfunction 

%Integrate over data and dump every M samples
function d = idmp(data, M)
    d = zeros(1,length(data)/M);
    for i = 1:length(d)
      d(i) = sum(data(1+(i-1)*M:i*M));
    end
endfunction


% DMR modulator ----------------------------------------------------------

function [tx, tx_filt, tx_stream] = fsk4_mod(fsk4_states, tx_bits)
  verbose = fsk4_states.verbose

  hbits = tx_bits(1:2:length(tx_bits));
  lbits = tx_bits(2:2:length(tx_bits));
  %Pad odd bit lengths
  if(length(hbits)!=length(lbits))
    lbits = [lbits 0];
  end
  tx_symbols = lbits + hbits*2 + 1;
  M = fsk4_states.M;
  nsym = length(tx_symbols);
  nsam = nsym*M;

  tx_stream = zeros(1,nsam);
  for i=1:nsym
    tx_stream(1+(i-1)*M:i*M) = fsk4_states.symmap(tx_symbols(i));
  end
  tx_filt = filter(fsk4_states.tx_filter, 1, tx_stream);
  tx = analog_fm_mod(fsk4_states.fm_states, tx_filt);

  if verbose
    figure(10);
    plot(20*log10(abs(fft(tx))))
    title("Spectrum of modulated 4FSK")
  endif

endfunction


% Integrate and Dump 4FSK demod ----------------------------------------------------

function bits = fsk4_demod_thing(fsk4_states, rx)

  M = fsk4_states.M;
  Fs = fsk4_states.Fs;
  verbose = fsk4_states.verbose;
  t = (0:length(rx)-1);
  symup = fsk4_states.modinfo.syms;
  
  % Integrator is like an FIR filter with rectangular window coeffs.
  % This has some nasty side lobes so lets limit the overall amount
  % of noise getting in.  tx filter just happens to work, but I imagine
  % other LPF would as well.
 
  Fs = fsk4_states.Fs;
  rf = (0:(Fs/2));
  rx_filter_a = fir1(100 ,.2);
  rx_filter_b = fsk4_states.rx_filter;
  rx_filter_n = [zeros(1,99) 1];

  rx = filter(rx_filter_b, 1, rx);

  sym1m = exp(-j*2*pi*(symup(1)/Fs)*t).*rx;
  sym2m = exp(-j*2*pi*(symup(2)/Fs)*t).*rx;
  sym3m = exp(-j*2*pi*(symup(3)/Fs)*t).*rx;
  sym4m = exp(-j*2*pi*(symup(4)/Fs)*t).*rx;

  % this puppy found by experiment between 1 and M. Will vary with different
  % filter impulse responses, as delay will vary.  f you add M to it coarse
  % timing will adjust by 1.

  fine_timing = 54;

  sym1m = idmp(sym1m(fine_timing:length(sym1m)),M); sym1m = (real(sym1m).^2+imag(sym1m).^2);
  sym2m = idmp(sym2m(fine_timing:length(sym2m)),M); sym2m = (real(sym2m).^2+imag(sym2m).^2);
  sym3m = idmp(sym3m(fine_timing:length(sym3m)),M); sym3m = (real(sym3m).^2+imag(sym3m).^2);
  sym4m = idmp(sym4m(fine_timing:length(sym4m)),M); sym4m = (real(sym4m).^2+imag(sym4m).^2);

  
  figure(2);
  nsym = 500;
  %subplot(411); plot(sym1m(1:nsym))
  %subplot(412); plot(sym2m(1:nsym))
  %subplot(413); plot(sym3m(1:nsym))
  %subplot(414); plot(sym4m(1:nsym))
  plot((1:nsym),sym1m(1:nsym),(1:nsym),sym2m(1:nsym),(1:nsym),sym3m(1:nsym),(1:nsym),sym4m(1:nsym))
  
  [x iv] = max([sym1m; sym2m; sym3m; sym4m;]);
  bits = zeros(1,length(iv*2));
  figure(3);
  hist(iv);
  for i=1:length(iv)
    bits(1+(i-1)*2:i*2) = [[0 0];[0 1];[1 0];[1 1]](iv(i),(1:2));
  end
endfunction

function dat = bitreps(in,M)
  dat = zeros(1,length(in)*M);
  for i=1:length(in)
    dat(1+(i-1)*M:i*M) = in(i);
  end
endfunction

% Minimal Running Disparity, 4 symbol encoder
% This is a simple 1 bit to 1 symbol encoding for 4fsk modems built
% on old fashoned FM radios.
function syms = mrd4(bits)
  syms = zeros(1,length(bits));
  rd=0;
  lastsym=0;
  for n = (1:length(bits))
    bit = bits(n);
    sp = [1 3](bit+1); %Map a bit to a +1 or +3
    [x,v] = min(abs([rd+sp rd-sp])); %Select +n or -n, whichever minimizes disparity
    ssel = [sp -sp](v);
    if(ssel == lastsym)ssel = -ssel;endif %never run 2 of the same syms in a row
    syms(n) = ssel; %emit the symbol
    rd = rd + ssel; %update running disparity
    lastsym = ssel; %remember this symbol for next time
  end
endfunction

% Minimal Running Disparity, 8 symbol encoder
% This is a simple 2 bit to 1 symbol encoding for 8fsk modems built
% on old fashoned FM radios.
function syms = mrd8(bits)
  bitlen = length(bits);
  if mod(bitlen,2) == 1
    bits = [bits 0]
  endif

  syms = zeros(1,length(bits)*.5);
  rd=0;
  lastsym=0;
  for n = (1:2:length(bits))
    bit = (bits(n)*2)+bits(n+1);
    sp = [1 3 7 5](bit+1); %Map a bit to a +1 or +3
    [x,v] = min(abs([rd+sp rd-sp])); %Select +n or -n, whichever minimizes disparity
    ssel = [sp -sp](v);
    if(ssel == lastsym)ssel = -ssel;endif %never run 2 of the same syms in a row
    syms((n+1)/2) = ssel; %emit the symbol
    rd = rd + ssel; %update running disparity
    lastsym = ssel; %remember this symbol for next time
  end
endfunction

% "Manchester 4" encoding
function syms = mane4(bits)
    syms = zeros(1,floor(bits/2)*2);
    for n = (1:2:length(bits))
      bit0 = bits(n);
      bit1 = bits(n+1);
      sel = 2*bit0+bit1+1;
      syms(n:n+1) = [[3 -3];[-3 3];[1 -1];[-1 1]]( sel,(1:2) );
    end
endfunction

function out = fold_sum(in,l)
  sublen = floor(length(in)/l);
  out = zeros(1,l);
  for i=(1:sublen)
    v = in(1+(i-1)*l:i*l);
    out = out + v;
  end
endfunction

function [bits err rxphi] = fsk4_demod_fmrid(fsk4_states, rx, enable_fine_timing = 0)
  %Demodulate fsk signal with an analog fm demod
  rxd = analog_fm_demod(fsk4_states.fm_states,rx);

  M = fsk4_states.M;
  verbose = fsk4_states.verbose;
  %This is the ideal fine timing, assuming the same offset in nfbert
  fine_timing = 61;

  %This is meant to be adjusted by the fine timing estimator. comment out for
  %ideal timing
  %fine_timing = 59;
  
  %RRC filter to get rid of some of the noise
  rxd = filter(fsk4_states.rx_filter, 1, rxd);

  %Try and figure out where sampling should happen over 30 symbol periods
  diffsel = fold_sum(abs(diff( rxd(3001:3001+(M*30)) )),10);
 
  if verbose
    figure(11);
    plot(diffsel);
    title("Fine timing estimation");
  endif

  %adjust fine timing
  [v iv] = min(diffsel);
  if enable_fine_timing
    fine_timing = 59 + iv;
  endif
  rxphi = iv;

  %sample symbols
  sym = rxd(fine_timing:M:length(rxd));

  if verbose
    figure(4)
    plot(sym(1:1000));
    title("Sampled symbols")
  endif
  %eyediagram(afsym,2);
  % Demod symbol map. I should probably figure a better way to do this.
  % After sampling, the furthest symbols tend to be distributed about .80

  % A little cheating to demap the symbols
  % Take a histogram of the sampled symbols, find the center of the largest distribution,
  % and correct the symbol map to match it
  [a b] = hist(abs(sym),50);
  [a ii] = max(a);
  %grmax = abs(b(ii));
  %grmax = (grmax<.65)*.65 + (grmax>=.65)*grmax;
  grmax = .84;
  dmsyms = rot90(fsk4_states.symmap*grmax)
  (dmsyms(2)+dmsyms(1))/2

  if verbose
    figure(2)
    hist(abs(sym),200);
    title("Sampled symbol histogram")
  endif

  %demap the symbols
  [err, symout] = min(abs(sym-dmsyms));
  
  if verbose
    figure(3)
    hist(symout);
    title("De-mapped symbols")
  endif

  bits = zeros(1,length(symout)*2);
  %Translate symbols back into bits

  for i=1:length(symout)
    bits(1+(i-1)*2:i*2) = [[1 1];[1 0];[0 1];[0 0]](symout(i),(1:2));
  end
endfunction

% Frequency response of the DMR raised cosine filter 
% from ETSI TS 102 361-1 V2.2.1 page 111
dmr.tx_filt_resp = @(f) sqrt(1.0*(f<=1920) - cos((pi*f)/1920).*1.0.*(f>1920 & f<=2880));
dmr.rx_filt_resp = dmr.tx_filt_resp;
dmr.max_dev = 1944;
dmr.syms = [-1944 -648 1944 648];
dmr.rs = 4800;
dmr.no_filter = 0;
dmr.demod_fx = @fsk4_demod_fmrid;
global dmr_info = dmr;


% No-filter 4FSK 'ideal' parameters
nfl.tx_filt_resp = @(f) 1;
nfl.rx_filt_resp = nfl.tx_filt_resp;
nfl.max_dev = 7200;
%nfl.syms = [-3600 -1200 1200 3600];
nfl.syms = [-7200,-2400,2400,7200];
nfl.rs = 4800;
nfl.no_filter = 1;
nfl.demod_fx = @fsk4_demod_thing;
global nflt_info = nfl;

%Some parameters for the NXDN filters
nxdn_al = .2;
nxdn_T = 416.7e-6;
nxdn_fl = ((1-nxdn_al)/(2*nxdn_T));
nxdn_fh = ((1+nxdn_al)/(2*nxdn_T));

%Frequency response of the NXDN filters
% from NXDN TS 1-A V1.3 page 13
% Please note : NXDN not fully implemented or tested
nxdn_H = @(f) 1.0*(f<nxdn_fl) + cos( (nxdn_T/(4*nxdn_al))*(2*pi*f-(pi*(1-nxdn_al)/nxdn_T)) ).*(f<=nxdn_fh & f>nxdn_fl);
nxdn_P = @(f) (f<=nxdn_fh & f>0).*((sin(pi*f*nxdn_T))./(.00001+(pi*f*nxdn_T))) + 1.0*(f==0);
nxdn_D = @(f) (f<=nxdn_fh & f>0).*((pi*f*nxdn_T)./(.00001+sin(pi*f*nxdn_T))) + 1.0*(f==0);

nxdn.tx_filt_resp = @(f) nxdn_H(f).*nxdn_P(f);
nxdn.rx_filt_resp = @(f) nxdn_H(f).*nxdn_D(f);
nxdn.rs = 4800;
nxdn.max_dev = 1050;
nxdn.no_filter = 0;
nxdn.syms = [-1050,-350,350,1050];
nxdn.demod_fx = @fsk4_demod_fmrid;
global nxdn_info = nxdn;

% Bit error rate test ----------------------------------------------------------
% Params - aEsNodB - EbNo in decibels
%        - timing_offset - how far the fine timing is offset
%        - bitcnt - how many bits to check
%        - demod_fx - demodulator function
% Returns - ber - the measured BER
%         - thrcoh - theory BER of a coherent demod
%         - thrncoh - theory BER of non-coherent demod
function [ber thrcoh thrncoh] = nfbert(aEsNodB,modem_config, bitcnt=100000, timing_offset = 10)

  rand('state',1); 
  randn('state',1);
  
  %How many bits should this test run?
  bitcnt = 120000;
  
  test_bits = [zeros(1,100) rand(1,bitcnt)>.5]; %Random bits. Pad with zeros to prime the filters
  fsk4_states.M = 1;
  fsk4_states = fsk4_init(fsk4_states,modem_config);
  
  %Set this to 0 to cut down on the plotting
  fsk4_states.verbose = 1; 
  Fs = fsk4_states.Fs;
  Rb = fsk4_states.Rs * 2;  % Multiply symbol rate by 2, since we have 2 bits per symbol
  
  tx = fsk4_mod(fsk4_states,test_bits);

  %add noise here
  %shamelessly copied from gmsk.m
  EsNo = 10^(aEsNodB/10);
  EbNo = EsNo
  variance = Fs/(Rb*EbNo);
  nsam = length(tx);
  noise = sqrt(variance/2)*(randn(1,nsam) + j*randn(1,nsam));
  rx    = tx*exp(j*pi/2) + noise;

  rx    = rx(timing_offset:length(rx));

  rx_bits = modem_config.demod_fx(fsk4_states,rx);
  ber = 1;
  
  %thing to account for offset from input data to output data
  %No preamble detection yet
  ox = 1;
  for offset = (1:100)
    nerr = sum(xor(rx_bits(offset:length(rx_bits)),test_bits(1:length(rx_bits)+1-offset)));
    bern = nerr/(bitcnt-offset);
    if(bern < ber)
      ox = offset;
      best_nerr = nerr;
    end
    ber = min([ber bern]);
  end
  offset = ox;
  printf("\ncoarse timing: %d nerr: %d\n", offset, best_nerr);

  % Coherent BER theory
  thrcoh = erfc(sqrt(EbNo));

  % non-coherent BER theory calculation
  % It was complicated, so I broke it up

  ms = 4;
  ns = (1:ms-1);
  as = (-1).^(ns+1);
  bs = (as./(ns+1));
  
  cs = ((ms-1)./ns);

  ds = ns.*log2(ms);
  es = ns+1;
  fs = exp( -(ds./es)*EbNo );
  
  thrncoh = ((ms/2)/(ms-1)) * sum(bs.*((ms-1)./ns).*exp( -(ds./es)*EbNo ));

endfunction

% RX fine timing estimation playground
function rxphi = fine_ex(timing_offset = 1)
  global dmr_info;
  global nxdn_info;
  global nflt_info;

  rand('state',1); 
  randn('state',1);

  bitcnt = 12051;
  test_bits = [zeros(1,100) rand(1,bitcnt)>.5]; %Random bits. Pad with zeros to prime the filters
  t_vec = [0 0 1 1];
  %test_bits = repmat(t_vec,1,ceil(24000/length(t_vec)));


  fsk4_states.M = 1;
  fsk4_states = fsk4_init(fsk4_states,dmr_info);
  Fs = fsk4_states.Fs;
  Rb = fsk4_states.Rs * 2;  %Multiply symbol rate by 2, since we have 2 bits per symbol
  
  tx = fsk4_mod(fsk4_states,test_bits);

  %add noise here
  %shamelessly copied from gmsk.m
  %EsNo = 10^(aEsNodB/10);
  %EbNo = EsNo
  %variance = Fs/(Rb*EbNo);
  %nsam = length(tx);
  %noise = sqrt(variance/2)*(randn(1,nsam) + j*randn(1,nsam));
  %rx    = tx*exp(j*pi/2) + noise;
  rx    = tx;
  rx    = rx(timing_offset:length(rx));

  [rx_bits biterr rxphi] = fsk4_demod_fmrid(fsk4_states,rx);
  ber = 1;
  
  %thing to account for offset from input data to output data
  %No preamble detection yet
  ox = 1;
  for offset = (1:100)
    nerr = sum(xor(rx_bits(offset:length(rx_bits)),test_bits(1:length(rx_bits)+1-offset)));
    bern = nerr/(bitcnt-offset);
    if(bern < ber)
      ox = offset;
      best_nerr = nerr;
    end
    ber = min([ber bern]);
  end
  offset = ox;
  printf("\ncoarse timing: %d nerr: %d\n", offset, best_nerr);

endfunction

%Run over a wide range of offsets and make sure fine timing makes sense
function fsk4_rx_phi(socket)
  %pkg load parallel
  offrange = [100:200];
  [a b c phi] = pararrayfun(1.25*nproc(),@nfbert,10*length(offrange),offrange);
  
  close all;
  figure(1);
  clf;
  plot(offrange,phi);
endfunction


% Run this function to compare the theoretical 4FSK modem performance
% with our DMR modem simulation

function fsk4_ber_curves
  global dmr_info;
  global nxdn_info;
  global nflt_info;

  EbNodB = 1:20;
  bers_tco = bers_real = bers_tnco = bers_idealsim = ones(1,length(EbNodB));

  %vectors of the same param to pass into pararrayfun
  dmr_infos = repmat(dmr_info,1,length(EbNodB));
  nflt_infos = repmat(nflt_info,1,length(EbNodB));
  thing = @fsk4_demod_thing;

  % Lovely innovation by Brady to use all cores and really speed up the simulation

  %try
    pkg load parallel
    bers_idealsim = pararrayfun(floor(1.25*nproc()),@nfbert,EbNodB,nflt_infos);
    [bers_real,bers_tco,bers_tnco] = pararrayfun(floor(1.25*nproc()),@nfbert,EbNodB,dmr_infos);
  %catch
  %  printf("You should install package parallel. It'll make this run way faster\n");
  %  for ii=(1:length(EbNodB));
      %[bers_real(ii),bers,tco(ii),bers_tnco(ii)] = nfbert(EbNodB(ii));
  %  end
  %end_try_catch

  close all
  figure(1);
  clf;
  semilogy(EbNodB, bers_tnco,'r;4FSK non-coherent theory;')
  hold on;

  semilogy(EbNodB, bers_tco,'b;4FSK coherent theory;')
  semilogy(EbNodB, bers_real ,'g;4FSK DMR simulation;')
  semilogy(EbNodB, bers_idealsim, 'v;FSK4 Ideal Non-coherent simulation;')
  hold off;
  grid("minor");
  axis([min(EbNodB) max(EbNodB) 1E-5 1])
  legend("boxoff");
  xlabel("Eb/No (dB)");
  ylabel("Bit Error Rate (BER)")

endfunction