aboutsummaryrefslogtreecommitdiff
path: root/octave/fsk_horus.m
blob: 2b41cf16dccac2e8134deda36db4858a5721f29d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
% fsk_horus.m
% David Rowe 10 Oct 2015
%
% Project Horus High Altitude Balloon (HAB) FSK demodulator
% See blog write up "All your modems are belong to us"
%   http://www.rowetel.com/?p=4629


fsk_lib;


% Basic modem set up for Horus

function states = fsk_horus_init(Fs,Rs,M=2)

  states = fsk_init(Fs,Rs,M);

  % Freq. estimator limits - keep these narrow to stop errors with low SNR 4FSK

  states.fest_fmin = 300;
  states.fest_fmax = 2800;
endfunction


% init rtty protocol specific states

function rtty = fsk_horus_init_rtty
  % Generate unique word that correlates against the ASCII "$$$$$" that
  % is at the start of each frame.
  % $ -> 36 decimal -> 0 1 0 0 1 0 0 binary 

  dollar_bits = fliplr([0 1 0 0 1 0 0]);
  mapped_db = 2*dollar_bits - 1;
  sync_bits = [1 1 0];
  mapped_sb = 2*sync_bits - 1;

  mapped = [mapped_db mapped_sb];
  npad   = rtty.npad   = 3;     % one start and two stop bits between 7 bit ascii chars
  nfield = rtty.nfield = 7;     % length of ascii character field

  rtty.uw = [mapped mapped mapped mapped mapped];
  rtty.uw_thresh = length(rtty.uw) - 2; % allow a few bit errors when looking for UW
  rtty.max_packet_len = 1000;
endfunction


% I think this is the binary protocol work from Jan 2016

function binary = fsk_horus_init_binary
  % Generate 16 bit "$$" unique word that is at the front of every horus binary
  % packet

  dollar_bits = [0 0 1 0 0 1 0 0];
  mapped_db = 2*dollar_bits - 1;

  binary.uw = [mapped_db mapped_db];
  binary.uw_thresh = length(binary.uw)-2;   % no bit errors when looking for UW

  binary.max_packet_len = 360;
endfunction


% Look for unique word and return index of first UW bit, or -1 if no
% UW found Sometimes there may be several matches, returns the
% position of the best match to UW.

function [uw_start best_corr corr] = find_uw(states, start_bit, rx_bits)
  uw = states.uw;

  mapped_rx_bits = 2*rx_bits - 1;
  best_corr = 0;
  uw_start = -1;
  found_uw = 0;

  % first first UW in buffer that exceeds threshold
  
  for i=start_bit:length(rx_bits) - length(uw)
    corr(i)  = mapped_rx_bits(i:i+length(uw)-1) * uw';
    if (found_uw == 0) && (corr(i) >= states.uw_thresh)
      uw_start = i;
      best_corr = corr;
      found_uw = 1;
    end
  end

endfunction


% Extract ASCII string from a Horus frame of bits

function [str crc_ok] = extract_ascii(states, rx_bits_buf, uw_loc)
  nfield = states.nfield;
  npad = states.npad;

  str = ""; str_dec = []; nstr = 0; ptx_crc = 1; rx_crc = "";
  endpacket = 0;

  st = uw_loc + length(states.uw);  % first bit of first char
  en = uw_loc + states.max_packet_len - nfield;
  %printf("\nst: %d en: %d len: %d\n", st, en, length(rx_bits_buf));

  for i=st:nfield+npad:en
    field = rx_bits_buf(i:i+nfield-1);
    ch_dec = field * (2.^(0:nfield-1))';

    % filter out unlikely characters that bit errors may introduce, and ignore \n

    if (ch_dec > 31) && (ch_dec < 91)
      str = [str char(ch_dec)];
    else 
      str = [str char(32)]; % space is "not sure"
    end
    nstr++;

    % build up array for CRC16 check

    if !endpacket && (ch_dec == 42)
      endpacket = 1; 
      rx_crc = crc16(str_dec);      % found a '*' so that's the end of the string for CRC calculations
      ptx_crc = nstr+1;             % this is where the transmit CRC starts
    end
    if !endpacket
      str_dec = [str_dec ch_dec];
    end
  end

  if (ptx_crc+3) <= length(str)
    tx_crc = str(ptx_crc:ptx_crc+3);
    crc_ok = strcmp(tx_crc, rx_crc);
  else
    crc_ok = 0;
  end

  str = str(1:ptx_crc-2);

endfunction


% Use soft decision information to find bits most likely in error.  I think
% this is some form of maximum likelihood decoding.

function [str crc_ok rx_bits_log_flipped] = sd_bit_flipping(states, rx_bits_log, rx_bits_sd_log, st, en);

  % force algorithm to ignore rs232 sync bits by marking them as "very likely", they have
  % no input to crc algorithm

  nfield = states.nfield;
  npad = states.npad;
  for i=st:nfield+npad:en
    rx_bits_sd_log(i+nfield:i+nfield+npad-1) = 1E6;
  end

  % make a list of bits with smallest soft decn values

  [dodgy_bits_mag dodgy_bits_index] = sort(abs(rx_bits_sd_log(st+length(states.uw):en)));
  dodgy_bits_index += length(states.uw) + st - 1;
  nbits = 6;
  ntries = 2^nbits;
  str = "";
  crc_ok = 0;
  
  % try various combinations of these bits

  for i=1:ntries-1
    error_mask = zeros(1, length(rx_bits_log));
    for b=1:nbits
      x = bitget(i,b);
      bit_to_flip = dodgy_bits_index(b);
      error_mask(bit_to_flip) = x;
      %printf("st: %d i: %d b: %d x: %d index: %d\n", st, i,b,x,bit_to_flip);
    end
    rx_bits_log_flipped = xor(rx_bits_log, error_mask);
    [str_flipped crc_ok_flipped] = extract_ascii(states, rx_bits_log_flipped, st);
    if crc_ok_flipped
      %printf("Yayy we fixed a packet by flipping with pattern %d\n", i);
      str = str_flipped;
      crc_ok = crc_ok_flipped;
    end
  end
endfunction


% Extract as many ASCII packets as we can from a great big buffer of bits

function npackets = extract_and_print_rtty_packets(states, rtty, rx_bits_log, rx_bits_sd_log)

  % use UWs to delimit start and end of data packets

  bit = 1;
  nbits = length(rx_bits_log);
  nfield = rtty.nfield;
  npad = rtty.npad;
  npackets = 0;
  
  uw_loc = find_uw(rtty, bit, rx_bits_log, states.verbose);
  
  while (uw_loc != -1)
    if bitand(states.verbose,0x8)
      printf("nbits: %d max_packet_len: %d uw_loc: %d\n", nbits, rtty.max_packet_len, uw_loc);
    end
    
    if (uw_loc + rtty.max_packet_len) < nbits
      % Now start picking out 7 bit ascii chars from frame.  It has some
      % structure so we can guess where fields are.  I hope we don't get
      % RS232 idle bits stuck into it anywhere, ie "bit fields" don't
      % change dynamically.

      % dump msg bits so we can use them as a test signal
      %msg = rx_bits_log(st:uw_loc-1);
      %save -ascii horus_msg.txt msg

      % simulate bit error for testing
      %rx_bits_log(st+200) = xor(rx_bits_log(st+100),1);
      %rx_bits_sd_log(st+100) = 0;
      
      [str crc_ok] = extract_ascii(rtty, rx_bits_log, uw_loc);

      if crc_ok == 0
        [str_flipped crc_flipped_ok rx_bits_log] = sd_bit_flipping(rtty, rx_bits_log, rx_bits_sd_log, uw_loc, uw_loc+rtty.max_packet_len); 
      end

      % update memory of previous packet, we use this to guess where errors may be
      if crc_ok || crc_flipped_ok
        states.prev_pkt = rx_bits_log(uw_loc+length(rtty.uw):uw_loc+rtty.max_packet_len);
      end

      if crc_ok
        str = sprintf("%s CRC OK", str);
        npackets++;
      else
        if crc_flipped_ok
          str = sprintf("%s fixed", str_flipped);
        else
          str = sprintf("%s CRC BAD", str);
        end
      end
      printf("%s\n", str);
    end

    % look for next packet

    bit = uw_loc + length(rtty.uw);
    uw_loc = find_uw(rtty, bit, rx_bits_log, states.verbose);

  endwhile
endfunction
 

% Extract as many binary packets as we can from a great big buffer of bits,
% and send them to the C decoder for FEC decoding.
% horus_l2 can be compiled a bunch of different ways.  You need to
% compile with:
%   codec2-dev/src$ gcc horus_l2.c -o horus_l2 -Wall -DDEC_RX_BITS -DHORUS_L2_RX

function corr_log = extract_and_decode_binary_packets(states, binary, rx_bits_log)
  corr_log = [];

  % use UWs to delimit start and end of data packets

  bit = 1;
  nbits = length(rx_bits_log);

  [uw_loc best_corr corr] = find_uw(binary, bit, rx_bits_log, states.verbose);
  corr_log = [corr_log corr];
  
  while (uw_loc != -1)

    if (uw_loc+binary.max_packet_len) < nbits
      % printf("uw_loc: %d best_corr: %d\n", uw_loc, best_corr);

      % OK we have a packet delimited by two UWs.  Lets convert the bit
      % stream into bytes and save for decoding

      pin = uw_loc;    
      for i=1:45
        rx_bytes(i) = rx_bits_log(pin:pin+7) * (2.^(7:-1:0))';
        pin += 8;
        %printf("%d 0x%02x\n", i, rx_bytes(i));
      end

      f=fopen("horus_rx_bits_binary.bin","wb");
      fwrite(f, rx_bytes, "uchar");
      fclose(f);

      % optionally write packet to disk to use as horus_tx_bits_binary.txt
      f=fopen("horus_rx_bits_binary.txt","wt");
      for i=uw_loc:uw_loc+45*8-1
        fprintf(f, "%d ", rx_bits_log(i));
      end
      fclose(f);

      system("../src/horus_l2");  % compile instructions above
    end

    bit = uw_loc + length(binary.uw);
    [uw_loc best_corr corr] = find_uw(binary, bit, rx_bits_log, states.verbose);
    corr_log = [corr_log corr];
   
  endwhile
  
endfunction
 

% simulation of tx and rx side, add noise, channel impairments ----------------------
%
% test_frame_mode     Description
% 1                   BER testing using known test frames
% 2                   random bits
% 3                   repeating sequence of all symbols
% 4                   Horus RTTY
% 5                   Horus Binary
% 6                   Horus High Speed: A 8x oversampled modem, e.g. Fs=9600, Rs=1200
%                     which is the same as Fs=921600 Rs=115200
%                     Uses packet based BER counter

function run_sim(test_frame_mode, M=2, frames = 10, EbNodB = 100, filename="fsk_horus.raw")
  timing_offset = 0.0; % see resample() for clock offset below
  fading = 0;          % modulates tx power at 2Hz with 20dB fade depth, 
                       % to simulate balloon rotating at end of mission
  df     = 0;          % tx tone freq drift in Hz/s
  dA     = 1;          % amplitude imbalance of tones (note this affects Eb so not a gd idea)

  more off
  rand('state',1); 
  randn('state',1);

  % ----------------------------------------------------------------------

  % sm2000 config ------------------------
  %states = fsk_horus_init(96000, 1200);
  %states.f1_tx = 4000;
  %states.f2_tx = 5200;

  if test_frame_mode < 4
    % horus rtty config ---------------------
    states = fsk_horus_init(8000, 50, M);
  end

  if test_frame_mode == 4
    % horus rtty config ---------------------
    states = fsk_horus_init(8000, 100, 2);
    states.tx_bits_file = "horus_payload_rtty.txt"; % Octave file of bits we FSK modulate
    rtty = fsk_horus_init_rtty;
    states.ntestframebits = rtty.max_packet_len;
  end
                               
  if test_frame_mode == 5
    % horus binary config ---------------------
    states = fsk_horus_init(8000, 100, 4);
    binary = fsk_horus_init_binary;
    states.tx_bits_file = "horus_tx_bits_binary.txt"; % Octave file of bits we FSK modulate
    states.ntestframebits = binary.max_packet_len;
  end

  if test_frame_mode == 6
    % horus high speed ---------------------
    states = fsk_horus_init(Fs=9600, Rs=1200, M=2, P=8, nsym=16);
    states.tx_bits_file = "horus_high_speed.bin";
  end

  % Tones must be at least Rs apart for ideal non-coherent FSK

  states.ftx = 900 + 2*states.Rs*(1:states.M);
  states.tx_tone_separation = states.ftx(2) - states.ftx(1);
  
  % ----------------------------------------------------------------------

  states.verbose = 0x1;
  M = states.M;
  N = states.N;
  P = states.P;
  Rs = states.Rs;
  nsym = states.nsym;
  nbit = states.nbit;
  Fs = states.Fs;
  states.df(1:M) = df;
  states.dA(1:M) = dA;

  % optional noise.  Useful for testing performance of waveforms from real world modulators

  EbNo = 10^(EbNodB/10);
  variance = states.Fs/(states.Rs*EbNo*states.bitspersymbol);

  % set up tx signal with payload bits based on test mode

  if (test_frame_mode == 1)
    % test frame of bits, which we repeat for convenience when BER testing
    states.ntestframebits = states.nbit;
    test_frame = round(rand(1, states.ntestframebits));
    tx_bits = [];
    for i=1:frames+1
      tx_bits = [tx_bits test_frame];
    end
  end

  if test_frame_mode == 2
    % random bits, just to make sure sync algs work on random data
    tx_bits = round(rand(1, states.nbit*(frames+1)));
  end

  if test_frame_mode == 3
    % repeating sequence of all symbols
    % great for initial test of demod if nothing else works, 
    % look for this pattern in rx_bits
    if M == 2
       % ...10101...
      tx_bits = zeros(1, states.nbit*(frames+1));
      tx_bits(1:2:length(tx_bits)) = 1;
    else
      % repeat each possible 4fsk symbol
      pattern = [0 0 0 1 1 0 1 1];
      %pattern = [0 0 0 1 1 1 1 0];
      nrepeats = states.nbit*(frames+1)/length(pattern);
      tx_bits = [];
      for b=1:nrepeats
        tx_bits = [tx_bits pattern];
      end   
      %tx_bits = zeros(1, states.nbit*(frames+1));
    end
  end
 
  if (test_frame_mode == 4) || (test_frame_mode == 5)

    % load up a horus msg from disk and modulate that

    test_frame = load(states.tx_bits_file);
    ltf = length(test_frame);
    ntest_frames = ceil((frames+1)*nbit/ltf);
    printf("Generating %d test packets\n", ntest_frames);

    % 1 second of random bits to let estimators lock on

    preamble = round(rand(1,states.Rs));

    tx_bits = preamble;    
    for i=1:ntest_frames
      tx_bits = [tx_bits test_frame];
    end

    % a packet len of random bits at end fill buffers to deocode final packet

    if test_frame_mode == 4
      postamble = round(rand(1,rtty.max_packet_len));
    else
      postamble = round(rand(1,binary.max_packet_len));
    end
    tx_bits = [tx_bits postamble];
  end

  if test_frame_mode == 6
    states.verbose += 0x4;
    ftmp = fopen(states.tx_bits_file, "rb"); test_frame = fread(ftmp,Inf,"char")'; fclose(ftmp);
    states.ntestframebits = length(test_frame);
    printf("length test frame: %d\n", states.ntestframebits);
    %test_frame = rand(1,states.ntestframebits) > 0.5;

    tx_bits = [];
    for i=1:frames+1
      tx_bits = [tx_bits test_frame];
    end
  end

  tx = fsk_mod(states, tx_bits);

  %tx = resample(tx, 1000, 1001); % simulated 1000ppm sample clock offset

  if fading
     ltx = length(tx);
     tx = tx .* (1.1 + cos(2*pi*2*(0:ltx-1)/Fs))'; % min amplitude 0.1, -20dB fade, max 3dB
  end

  noise = sqrt(variance)*randn(length(tx),1);
  rx    = tx + noise;
  printf("SNRdB meas: %4.1f\n", 10*log10(var(tx)/var(noise)));

  % dump simulated rx file

  ftx=fopen(filename,"wb"); rxg = rx*1000; fwrite(ftx, rxg, "short"); fclose(ftx);

  timing_offset_samples = round(timing_offset*states.Ts);
  st = 1 + timing_offset_samples;
  rx_bits_buf = zeros(1,nbit+states.ntestframebits);
  x_log = [];
  timing_nl_log = [];
  norm_rx_timing_log = [];
  f_int_resample_log = [];
  f_log = [];
  EbNodB_log = [];
  rx_bits_log = [];
  rx_bits_sd_log = [];

  % main loop ---------------------------------------------------------------

  run_frames = floor(length(rx)/N)-1;
  for f=1:run_frames

    % extract nin samples from input stream

    nin = states.nin;
    en = st + states.nin - 1;

    if en < length(rx) % due to nin variations its possible to overrun buffer
      sf = rx(st:en);
      st += nin;

      % demodulate to stream of bits

      states = est_freq(states, sf, states.M);
      %states.f = 900 + 2*states.Rs*(1:states.M);
      %states.f = [1200 1400 1600 1800];
      [rx_bits states] = fsk_demod(states, sf);

      rx_bits_buf(1:states.ntestframebits) = rx_bits_buf(nbit+1:states.ntestframebits+nbit);
      rx_bits_buf(states.ntestframebits+1:states.ntestframebits+nbit) = rx_bits;
      %rx_bits_buf(1:nbit) = rx_bits_buf(nbit+1:2*nbit);
      %rx_bits_buf(nbit+1:2*nbit) = rx_bits;

      rx_bits_log = [rx_bits_log rx_bits];
      rx_bits_sd_log = [rx_bits_sd_log states.rx_bits_sd];

      norm_rx_timing_log = [norm_rx_timing_log states.norm_rx_timing];
      x_log = [x_log states.x];
      timing_nl_log = [timing_nl_log states.timing_nl];
      f_int_resample_log = [f_int_resample_log abs(states.f_int_resample(:,:))];
      f_log = [f_log; states.f];
      EbNodB_log = [EbNodB_log states.EbNodB];

      if test_frame_mode == 1
        states = ber_counter(states, test_frame, rx_bits_buf);
      end
      if test_frame_mode == 6
        states = ber_counter_packet(states, test_frame, rx_bits_buf);
      end
   end
  end

  % print stats, count errors, decode packets  ------------------------------------------

  if (test_frame_mode == 1) || (test_frame_mode == 6)
    printf("frames: %d EbNo: %3.2f Tbits: %d Terrs: %d BER %4.3f\n", frames, EbNodB, states.Tbits,states. Terrs, states.Terrs/states.Tbits);
  end

  if test_frame_mode == 4
    npackets = extract_and_print_rtty_packets(states, rtty, rx_bits_log, rx_bits_sd_log);
    printf("Received %d packets\n", npackets);
  end

  if test_frame_mode == 5
    extract_and_decode_binary_packets(states, binary, rx_bits_log);
  end

  figure(1);
  plot(f_int_resample_log','+')
  hold off;

  figure(2)
  clf
  m = max(abs(x_log));
  plot(x_log,'+')
  axis([-m m -m m])
  title('fine timing metric')

  figure(3)
  clf
  subplot(211)
  plot(norm_rx_timing_log);
  axis([1 run_frames -1 1])
  title('norm fine timing')
  subplot(212)
  plot(states.nerr_log)
  title('num bit errors each frame')

  figure(4)
  clf
  subplot(211)
  one_sec_rx = rx(1:min(Fs,length(rx)));
  plot(one_sec_rx)
  title('rx signal at demod input')
  subplot(212)
  plot(abs(fft(one_sec_rx)))

  figure(5)
  clf
  plot(f_log,'+')
  title('tone frequencies')
  axis([1 run_frames 0 Fs/2])

  figure(6)
  clf
  plot(EbNodB_log);
  title('Eb/No estimate')

  figure(7)
  clf
  subplot(211)
  X = abs(fft(timing_nl_log));
  plot(X(1:length(X)/2))
  subplot(212)
  plot(abs(timing_nl_log(1:100)))

 endfunction


% ---------------------------------------------------------------------
% demodulate from a user-supplied file
% ---------------------------------------------------------------------

function rx_bits_log = demod_file(filename, test_frame_mode=4, noplot=0, EbNodB=100, max_frames=1E32)
  fin = fopen(filename,"rb"); 
  more off;
  read_complex = 0; sample_size = 'int16'; shift_fs_on_4 = 0;
  max_frames
  
  if test_frame_mode == 4
    % horus rtty config ---------------------
    states = fsk_horus_init(8000, 100, 2);
    rtty = fsk_horus_init_rtty;
    states.ntestframebits = rtty.max_packet_len;
  end
                               
  if test_frame_mode == 5
    % horus binary config ---------------------
    states = fsk_horus_init(8000, 100, 4);
    binary = fsk_horus_init_binary;
    states.ntestframebits = binary.max_packet_len;
  end

  states.verbose = 0x1 + 0x8;

  if test_frame_mode == 6
    % Horus high speed config --------------
    states = fsk_horus_init(Fs=9600, Rs=1200, M=2,  P=8, nsym=16);
    states.tx_bits_file = "horus_high_speed.bin";
    states.verbose += 0x4;
    ftmp = fopen(states.tx_bits_file, "rb"); test_frame = fread(ftmp,Inf,"char")'; fclose(ftmp);
    states.ntestframebits = length(test_frame);
    printf("length test frame: %d\n", states.ntestframebits);
  end

  if test_frame_mode == 7
    % 800XA 4FSK modem --------------
    states = fsk_init(Fs=8000, Rs=400, M=4, P=10, nsym=256);
    states.tx_bits_file = "horus_high_speed.bin";
    states.verbose += 0x4;
    ftmp = fopen(states.tx_bits_file, "rb"); test_frame = fread(ftmp,Inf,"char")'; fclose(ftmp);
    states.ntestframebits = length(test_frame);
    printf("length test frame: %d\n", states.ntestframebits);
  end

  if test_frame_mode == 8
    % test RS41 type balllon telemetry --------------
    states = fsk_init(96000, 4800, 2, 10, 16);
    states.fest_fmin = 1000;
    states.fest_fmax = 40000;
    states.fest_min_spacing = 1000;
    states.tx_bits_file = "../build_linux/src/tx_bit.bin";
    states.verbose += 0x4;
    #ftmp = fopen(states.tx_bits_file, "rb"); test_frame = fread(ftmp,Inf,"char")'; fclose(ftmp);
    #states.ntestframebits = length(test_frame);
    #printf("length test frame: %d\n", states.ntestframebits);
    states.ntestframebits = 1000;
    read_complex = 1;
    shift_fs_on_4 = 1; % get samples into range of current freq estimator
  end

  if test_frame_mode == 9
    % Wenet high speed SSTV, we can just check raw demo here ---------------------
    % despite the high sample rate the modem sees this as a 8:1 Fs/Rs configuration
    states = fsk_init(8000, 1000, 2);
    states.tx_tone_separation = 1000;
    states.ntestframebits = (256+2+65)*8+40; % from src/drs232_lpc.c
    states.freq_est_type = 'mask';
    read_complex=1; sample_size = 'uint8'; 
    printf("Wenet mode: ntestframebits: %d freq_est_type: %s\n", states.ntestframebits, states.freq_est_type);
    %states.verbose = 0x8;
  end
                               
  N = states.N;
  P = states.P;
  Rs = states.Rs;
  nsym = states.nsym;
  nbit = states.nbit;

  frames = 0;
  rx = [];
  rx_bits_log = [];
  rx_bits_sd_log = [];
  norm_rx_timing_log = [];
  f_int_resample_log = [];
  EbNodB_log = [];
  ppm_log = [];
  f_log = []; Sf_log = [];
  
  rx_bits_buf = zeros(1,nbit + states.ntestframebits);

  % optional noise.  Useful for testing performance of waveforms from real world modulators
  % we need to pre-read the file to estimate the signal power
  ftmp = fopen(filename,"rb"); s = fread(ftmp,Inf,sample_size); fclose(ftmp);
  if sample_size == "uint8" s = (s - 127)/128; end
  if read_complex s = s(1:2:end) + j*s(2:2:end); end
  tx_pwr = var(s);
  EbNo = 10^(EbNodB/10);
  variance = (tx_pwr/2)*states.Fs/(states.Rs*EbNo*states.bitspersymbol);

  % First extract raw bits from samples ------------------------------------------------------

  printf("demod of raw bits....\n");

  finished = 0; ph = 1;
  while (finished == 0)

    % extract nin samples from input stream

    nin = states.nin;
    if read_complex
      [sf count] = fread(fin, 2*nin, sample_size);
      if sample_size == "uint8" sf = (sf - 127)/128; end
      sf = sf(1:2:end) + j*sf(2:2:end);
      count /= 2;
      if shift_fs_on_4
        % optional shift up in freq by Fs/4 to get into freq est range
        for i=1:count
          ph = ph*exp(j*pi/4);
          sf(i) *= ph;
        end
      end
    else
      [sf count] = fread(fin, nin, "short");
    end
    rx = [rx; sf];
    
    % add optional noise

    if count
      noise = sqrt(variance)*randn(count,1);
      sf += noise;
    end

    if count == nin
      frames++;

      % demodulate to stream of bits

      states = est_freq(states, sf, states.M);
      if states.freq_est_type == 'mask' states.f = states.f2; end
      [rx_bits states] = fsk_demod(states, sf);

      rx_bits_buf(1:states.ntestframebits) = rx_bits_buf(nbit+1:states.ntestframebits+nbit);
      rx_bits_buf(states.ntestframebits+1:states.ntestframebits+nbit) = rx_bits;

      rx_bits_log = [rx_bits_log rx_bits];
      rx_bits_sd_log = [rx_bits_sd_log states.rx_bits_sd];
      norm_rx_timing_log = [norm_rx_timing_log states.norm_rx_timing];
      f_int_resample_log = [f_int_resample_log abs(states.f_int_resample)];
      EbNodB_log = [EbNodB_log states.EbNodB];
      ppm_log = [ppm_log states.ppm];
      f_log = [f_log; states.f];
      Sf_log = [Sf_log; states.Sf'];
      
      if (test_frame_mode == 1)
        states = ber_counter(states, test_frame, rx_bits_buf);
        if states.ber_state == 1
          states.verbose = 0;
        end
      end
      if (test_frame_mode == 6)  % || (test_frame_mode == 8)
        states = ber_counter_packet(states, test_frame, rx_bits_buf);
      end
     else      
      finished = 1;
    end

    if frames > max_frames finished=1; end
      
  end
  printf("frames: %d\n", frames);
  fclose(fin);

  if noplot == 0
    printf("plotting...\n");

    figure(1); clf;
    plot(f_log);
    title('Tone Freq Estimates');
    
    figure(2);
    plot(f_int_resample_log','+')
    title('Integrator outputs for each tone');

    figure(3); clf
    subplot(211)
    plot(norm_rx_timing_log)
    axis([1 frames -0.5 0.5])
    title('norm fine timing')
    subplot(212)
    plot(states.nerr_log)
    title('num bit errors each frame')
 
    figure(4); clf
    plot(EbNodB_log);
    title('Eb/No estimate')

    figure(5); clf
    rx_nowave = rx(1000:length(rx)); % skip past wav header if it's a wave file
    subplot(211)
    plot(real(rx_nowave));
    title('input signal to demod (1 sec)')
    xlabel('Time (samples)');
    %axis([1 states.Fs -35000 35000])

    % normalise spectrum to 0dB full scale with sine wave input
    subplot(212);
    if sample_size == "int16" max_value = 32767; end
    if sample_size == "uint8" max_value = 127; end
    RxdBFS = 20*log10(abs(fft(rx_nowave(1:states.Fs)))) - 20*log10((states.Fs/2)*max_value);
    plot(RxdBFS)
    axis([1 states.Fs/2 -80 0])
    xlabel('Frequency (Hz)');

    figure(6); clf
    plot(ppm_log)
    title('Sample clock (baud rate) offset in PPM');

    figure(7); clf; mesh(Sf_log(1:10,:));
  end

  if (test_frame_mode == 1) || (test_frame_mode == 6)
    printf("frames: %d Tbits: %d Terrs: %d BER %4.3f EbNo: %3.2f\n", frames, states.Tbits,states. Terrs, states.Terrs/states.Tbits, mean(EbNodB_log));
  end

  % we can decode both protocols at the same time

  if (test_frame_mode == 4)
    npackets = extract_and_print_rtty_packets(states, rtty, rx_bits_log, rx_bits_sd_log)
    printf("Received %d packets\n", npackets);
  end
  
  if (test_frame_mode == 5)
    corr_log = extract_and_decode_binary_packets(states, binary, rx_bits_log);
    
    figure(8);
    clf
    plot(corr_log);
    hold on;
    plot([1 length(corr_log)],[binary.uw_thresh binary.uw_thresh],'g');
    hold off;
    title('UW correlation');
  end

endfunction


% Over the years this modem has been used for many different FSK signals ...

if exist("fsk_horus_as_a_lib") == 0
  run_sim(test_frame_mode=4, M=2, frames=30, EbNodB = 20);
  %run_sim(5, 4, 30, 100);
  %rx_bits = demod_file("~/Desktop/115.wav",6,0,90);
  %rx_bits = demod_file("~/Desktop/fsk_800xa_rx_hackrf.wav",7);
  %rx_bits = demod_file("~/Desktop/2fsk_100_rx_rpi_rtlsdr_002_ledger.wav",4);
  %rx_bits = demod_file("~/Desktop/phorus_binary_ascii.wav",4);
  %rx_bits = demod_file("~/Desktop/binary/horus_160102_binary_rtty_2.wav",4);
  %rx_bits = demod_file("~/Desktop/horus_160102_vk5ei_capture2.wav",4);
  %rx_bits = demod_file("~/Desktop/horus_rtty_binary.wav",4);
  %rx_bits = demod_file("~/Desktop/FSK_4FSK.wav",4);
  %rx_bits = demod_file("t.raw",5);
  %rx_bits = demod_file("~/Desktop/fsk_horus_10dB_1000ppm.wav",4);
  %rx_bits = demod_file("~/Desktop/fsk_horus_6dB_0ppm.wav",4);
  %rx_bits = demod_file("test.raw",1,1);
  %rx_bits = .rawdemod_file("/dev/ttyACM0",1);
  %rx_bits = demod_file("fsk_horus_rx_1200_96k.raw",1);
  %rx_bits = demod_file("mp.raw",4);
  %rx_bits = demod_file("~/Desktop/launchbox_v2_landing_8KHz_final.wav",4);
  %rx_bits = demod_file("~/Desktop/fsk_800xa.wav",7);
  %rx_bits = demod_file("~/Desktop/rs41_96k_10s.iq16",8);
end