1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
|
% ofdm_lib.m
% David Rowe Mar 2017
#{
Library of functions that implement a PSK OFDM modem.
#}
1;
qam16;
esno_est;
ofdm_mode;
ofdm_state;
ofdm_helper;
%-------------------------------------------------------------
% ofdm_init
%-------------------------------------------------------------
#{
Modem frame has a pilot every Ns symbols. There are Ns-1 data
symbols between every pilot.
e.g. for Ns=4, Nc=6:
|-Nc-| Time
DDDDDD |
PPPPPPPP --- |
DDDDDD | |
DDDDDD Ns |
DDDDDD | |
PPPPPPPP --- \|/
DDDDDD | |
Freq------------------>
In this figure, time flows down, freq across.
#}
function states = ofdm_init(config)
Rs = config.Rs;
Tcp = config.Tcp;
Ns = config.Ns;
Nc = config.Nc;
bps = config.bps;
Np = config.Np;
Ntxtbits = config.Ntxtbits;
Nuwbits = config.Nuwbits;
ftwindow_width = config.ftwindow_width;
timing_mx_thresh = config.timing_mx_thresh;
tx_uw = config.tx_uw;
bad_uw_errors = config.bad_uw_errors;
amp_scale = config.amp_scale;
amp_est_mode = config.amp_est_mode;
EsNo_est_all_symbols = config.EsNo_est_all_symbols;
EsNodB = config.EsNodB;
state_machine = config.state_machine;
edge_pilots = config.edge_pilots;
clip_gain1 = config.clip_gain1;
clip_gain2 = config.clip_gain2;
foff_limiter = config.foff_limiter;
txbpf_width_Hz = config.txbpf_width_Hz;
data_mode = config.data_mode;
states.Fs = 8000;
states.bps = bps;
states.Rs = Rs;
states.Tcp = Tcp;
states.Ns = Ns; % one pilot every Ns symbols, e.g. Ns=4, ...PDDDPDDDP...
states.Nc = Nc; % Number of carriers
states.M = states.Fs/Rs; % oversampling rate
states.Ncp = Tcp*states.Fs;
states.Nbitsperframe = (Ns-1)*Nc*bps; % total bits in all data symbols in modem frame
states.Nsampersymbol = states.M+states.Ncp; % number of samples in a single symbol
states.Nsamperframe = Ns*states.Nsampersymbol; % number of samples in a modem frame
states.qam16 = [
1 + j, 1 + j*3, 3 + j, 3 + j*3;
1 - j, 1 - j*3, 3 - j, 3 - j*3;
-1 + j, -1 + j*3, -3 + j, -3 + j*3;
-1 - j, -1 - j*3, -3 - j, -3 - j*3]/3;
rms = sqrt(states.qam16(:)'*states.qam16(:)/16);% set average Es to 1
states.qam16 /= rms;
states.qam16 *= exp(-j*pi/4); % same rotation as QPSK constellation
states.Np = Np; % number of modem frames per packet. In some modes we want
% the total packet of data to span multiple modem frames, e.g. HF data
% and/or when the FEC codeword is larger than the one
% modem frame. In other modes (e.g. 700D/2020) Np=1, ie the modem frame
% is the same length as the packet/FEC codeword.
states.Nbitsperpacket = Np*states.Nbitsperframe;
states.Tpacket = Np*Ns*(Tcp+1/Rs); % time for one packet in ms
states.Ntxtbits = Ntxtbits; % reserved bits/frame for auxiliary text information. Uncoded/unprotected so may
% be of limited use going forward, consider setting to 0
states.Nuwbits = Nuwbits;
% some basic sanity checks
assert(floor(states.M) == states.M);
% UW symbol placement.
% Note we need to fill each UW symbols with bits. The LDPC decoder
% works on symbols so we can't break up any symbols into UW/FEC
% encoded bits.
states.uw_ind = states.uw_ind_sym = [];
% lets see if all UW syms will fit in frame
Nuwsyms = states.Nuwbits/bps;
Ndatasymsperframe = (Ns-1)*Nc;
states.spread_uw = 0;
if states.spread_uw
uw_step = 1.8*floor(states.Nbitsperpacket/states.Nuwbits);
else
uw_step = Nc+1; % default step for UW sym placement
end
last_sym = floor(Nuwsyms*uw_step/bps+1);
if last_sym > states.Np*Ndatasymsperframe
uw_step = Nc-1; % try a different step
end
last_sym = floor(Nuwsyms*uw_step/bps+1);
assert(last_sym <= states.Np*Ndatasymsperframe); % we still can't fit them all
% Place UW symbols in frame
for i=1:Nuwsyms
ind_sym = floor(i*uw_step/bps+1);
% printf("%d sym: %d\n",i, ind_sym);
states.uw_ind_sym = [states.uw_ind_sym ind_sym]; % symbol index
for b=bps-1:-1:0
states.uw_ind = [states.uw_ind bps*ind_sym-b]; % bit index
end
end
% how many of the first few frames have UW symbols in them
Nsymsperframe = states.Nbitsperframe/states.bps;
states.Nuwframes = ceil(states.uw_ind_sym(end)/Nsymsperframe);
states.tx_uw = tx_uw;
assert(length(states.tx_uw) == states.Nuwbits);
tx_uw_syms = [];
for b=1:bps:states.Nuwbits
if bps == 2 tx_uw_syms = [tx_uw_syms qpsk_mod(states.tx_uw(b:b+1))]; end
if bps == 4 tx_uw_syms = [tx_uw_syms qam16_mod(states.qam16, states.tx_uw(b:b+bps-1))]; end
end
states.tx_uw_syms = tx_uw_syms;
% if the UW has this many errors it is "bad", the binomal cdf can be used to
% set this with the ofdm_determine_bad_uw_errors() function below
%
% Nuw=12; plot(0:Nuw, binocdf(0:Nuw,Nuw,0.05)); hold on; plot(binocdf(0:Nuw,Nuw,0.5)); hold off;
states.bad_uw_errors = bad_uw_errors;
states.ofdm_peak = 16384;
% use this to scale tx output to 16 bit short to a peak value of 16384. Adjusted by experiment
states.amp_scale = amp_scale;
% when using the clipping, this is the manual gain value. Adjusted by experiment, trade off between
% increased average power and BER
states.clip_gain1 = clip_gain1;
states.clip_gain2 = clip_gain2;
states.txbpf_width_Hz = txbpf_width_Hz;
% this is used to scale inputs to LDPC decoder to make it amplitude indep
states.mean_amp = 0;
% use a fixed EsNo for LDPC decoder, this seems to work OK and avoid another estimator
states.EsNodB = EsNodB;
% generate same BPSK pilots each time
rand('seed',1);
states.pilots = 1 - 2*(rand(1,Nc+2) > 0.5);
%printf("number of pilots total: %d\n", length(states.pilots));
% If set, place pilots at carrier 1 and Nc+2 to support low bandwidth phase est over grid
% of 12 pilot_samples. Used for 700D and 2020
states.edge_pilots = edge_pilots;
if states.edge_pilots == 0
states.pilots(1) = 0;
states.pilots(Nc+2) = 0;
end
% carrier tables for up and down conversion
states.fcentre = fcentre = 1500;
alower = fcentre - Rs * (Nc/2); % approx frequency of lowest carrier
Nlower = round(alower / Rs) - 1; % round this to nearest integer multiple from 0Hz to keep DFT happy
%printf(" fcentre: %f alower: %f alower/Rs: %f Nlower: %d\n", fcentre, alower, alower/Rs, Nlower);
w = (Nlower:Nlower+Nc+1)*2*pi/(states.Fs/Rs);
W = zeros(Nc+2,states.M);
for c=1:Nc+2
W(c,:) = exp(j*w(c)*(0:states.M-1));
end
states.w = w;
states.W = W;
% fine timing search +/- window_width/2 from current timing instant,
% set this to roughly twice the maximum delay spread
states.ftwindow_width = ftwindow_width;
% magic number we adjust by experiment (see ofdm_dev.m acquisition tests, blog post on 700D sync)
states.timing_mx_thresh = timing_mx_thresh;
% Receive buffer: rxbufst + D P DDD P DDD P DDD P D
% ^
% nominal start of current modem frame
if length(data_mode)
Nrxbufhistory = (states.Np+2)*states.Nsamperframe; % extra storage at start of rxbuf to allow us to step back in time
else
Nrxbufhistory = 0;
end
states.rxbufst = Nrxbufhistory; % start of rxbuf window used for demod of current rx frame
states.Nrxbufhistory = Nrxbufhistory;
% D P DDD P DDD P DDD P D
states.Nrxbufmin = states.Nsampersymbol + 3*states.Nsamperframe + states.Nsampersymbol + states.Nsampersymbol;
states.Nrxbuf = Nrxbufhistory + states.Nrxbufmin;
states.rxbuf = zeros(1, states.Nrxbuf);
% default settings on a bunch of options and states
states.verbose = 0;
states.timing_en = 1;
states.foff_est_en = 1;
states.phase_est_en = 1;
states.phase_est_bandwidth = "high";
states.dpsk = 0;
states.amp_est_mode = amp_est_mode;
states.foff_est_gain = 0.1;
states.foff_limiter = foff_limiter;
states.foff_est_hz = 0;
states.sample_point = states.timing_est = 1;
states.nin = states.Nsamperframe;
states.timing_valid = 0;
states.timing_mx = 0;
states.coarse_foff_est_hz = 0;
states.foff_metric = 0;
% generate OFDM pilot symbol, used for timing and freq offset est
rate_fs_pilot_samples = states.pilots * W/states.M;
% During tuning it was found that not including the cyc prefix in
% rate_fs_pilot_samples produced better fest results
%states.rate_fs_pilot_samples = [rate_fs_pilot_samples(states.M-states.Ncp+1:states.M) rate_fs_pilot_samples];
states.rate_fs_pilot_samples = [zeros(1,states.Ncp) rate_fs_pilot_samples];
% pre-compute a constant used to detect valid modem frames
Npsam = length(states.rate_fs_pilot_samples);
states.timing_norm = Npsam*(states.rate_fs_pilot_samples * states.rate_fs_pilot_samples');
% printf("timing_norm: %f\n", states.timing_norm)
% sync state machine
states.sync_state = states.last_sync_state = 'search';
states.uw_errors = 0;
states.sync_counter = 0;
states.frame_count = 0; % number of frames we have been in sync
states.sync_start = 0;
states.sync_end = 0;
states.modem_frame = 0; % keep track of how many frames received in packet
states.state_machine = state_machine; % mode specific state machine
states.packetsperburst = 0; % for OFDM data modes, how many packets before we reset state machine
states.postambledetectoren = strcmp(data_mode,"burst");
states.npre = states.npost = 0; % counters for logging
% LDPC code is optionally enabled
states.rate = 1.0;
states.ldpc_en = 0;
% init some output states for logging
states.rx_sym = zeros(1+Ns+1+1, Nc+2);
% Es/No (SNR) est states
states.EsNo_est_all_symbols = EsNo_est_all_symbols;
states.clock_offset_est = 0;
% pre-amble for data modes
states.data_mode = data_mode;
if length(states.data_mode)
states.tx_preamble = ofdm_generate_preamble(states, 2);
states.tx_postamble = ofdm_generate_preamble(states, 3);
end
% automated tests
test_qam16_mod_demod(states.qam16);
test_assemble_disassemble(states);
endfunction
% Gray coded QPSK modulation function
function symbol = qpsk_mod(two_bits)
two_bits_decimal = sum(two_bits .* [2 1]);
switch(two_bits_decimal)
case (0) symbol = 1;
case (1) symbol = j;
case (2) symbol = -j;
case (3) symbol = -1;
endswitch
endfunction
% Gray coded QPSK demodulation function
function two_bits = qpsk_demod(symbol)
bit0 = real(symbol*exp(j*pi/4)) < 0;
bit1 = imag(symbol*exp(j*pi/4)) < 0;
two_bits = [bit1 bit0];
endfunction
function out = freq_shift(in, foff, Fs)
foff_rect = exp(j*2*pi*foff/Fs);
foff_phase_rect = exp(j*0);
for r=1:length(in)
foff_phase_rect *= foff_rect;
out(r) = in(r)*foff_phase_rect;
end
endfunction
% -----------------------------------------------------------------
% ofdm_mod - modulates a complete packet (one or more modem frames)
% ----------------------------------------------------------------
function tx = ofdm_mod(states, tx_bits)
ofdm_load_const;
assert(length(tx_bits) == Nbitsperpacket);
% map to symbols in linear array
if bps == 1
tx_sym_lin = 2*tx_bits - 1;
end
if bps == 2
for s=1:Nbitsperpacket/bps
tx_sym_lin(s) = qpsk_mod(tx_bits(2*(s-1)+1:2*s));
end
end
if bps == 4
for s=1:Nbitsperpacket/bps
tx_sym_lin(s) = qam16_mod(states.qam16,tx_bits(4*(s-1)+1:4*s));
end
end
tx = ofdm_txframe(states, tx_sym_lin);
endfunction
% ----------------------------------------------
% ofdm_txframe - modulates one packet of symbols
% ----------------------------------------------
function tx = ofdm_txframe(states, tx_sym_lin)
ofdm_load_const;
assert(length(tx_sym_lin) == Nbitsperpacket/bps);
% place data symbols in multi-carrier frame with pilots and boundary carriers
s = 1; tx_frame = zeros(Np*Ns,Nc+2);
for r=1:Np*Ns
if mod(r-1,Ns) == 0
% row of pilots
tx_frame(r,:) = pilots;
else
% row of data symbols
arowofsymbols = tx_sym_lin(s:s+Nc-1);
tx_frame(r,2:Nc+1) = arowofsymbols;
s += Nc;
if states.dpsk
tx_frame(r,2:Nc+1) = tx_frame(r,2:Nc+1) .* tx_frame(r-1,2:Nc+1);
end
end
end
% make sure we use all the symbols
assert((s-1) == length(tx_sym_lin));
% OFDM upconvert symbol by symbol so we can add CP
tx = [];
for r=1:Ns*Np
asymbol = tx_frame(r,:) * W/M;
asymbol_cp = [asymbol(M-Ncp+1:M) asymbol];
tx = [tx asymbol_cp];
end
endfunction
% -----------------------------------------------------------
% est_timing
% -----------------------------------------------------------
#{
Correlates known samples (for example pilots or a preamble) with a window of received
samples to determine the most likely timing offset. Optionally combines
known samples from two frames (e.g. pilots at start of this and next frame)
so we need at least Nsamperframe+M+Ncp samples in rx.
Can be used for acquisition (coarse timing), and fine timing. Tends
to break down when freq offset approaches +/- symbol rate (e.g +/-
25 Hz for 700D).
#}
function [t_est timing_valid timing_mx av_level] = est_timing(states, rx, known_samples, step, dual=1)
ofdm_load_const;
Npsam = length(known_samples);
Ncorr = length(rx) - (Nsamperframe+Npsam);
corr = zeros(1,Ncorr);
%printf("Npsam: %d M+Ncp: %d Ncorr: %d Nsamperframe: %d step: %d\n", Npsam, M+Ncp, Ncorr, Nsamperframe, step);
% normalise correlation so we can compare to a threshold across varying input levels
av_level = 2*sqrt(states.timing_norm*(rx*rx')/length(rx)) + 1E-12;
% correlate with pilots at start and (optionally) end of frame to determine timing offset
for i=1:step:Ncorr
rx1 = rx(i:i+Npsam-1);
corr_st = rx1 * known_samples';
corr_en = 0;
if dual
% for the streaming voice modes we also correlate with pilot samples at start of next frame
rx2 = rx(i+Nsamperframe:i+Nsamperframe+Npsam-1);
corr_en = rx2 * known_samples';
end
corr(i) = (abs(corr_st) + abs(corr_en))/av_level;
end
[timing_mx t_est] = max(abs(corr));
% only declare timing valid if there are enough samples in rxbuf to demodulate a frame
timing_valid = (abs(rx(t_est)) > 0) && (timing_mx > timing_mx_thresh);
if verbose > 1
printf(" av_level: %5.4f mx: %4.3f timing_est: %4d timing_valid: %d\n", av_level, timing_mx, t_est, timing_valid);
end
if verbose > 2
figure(10); clf;
subplot(211); plot(rx)
subplot(212); plot(corr)
figure(11); clf; plot(real(known_samples));
end
endfunction
% -----------------------------------------------------------
% est_freq_offset_known_corr
% -----------------------------------------------------------
#{
Determines frequency offset at current timing estimate, used for
coarse freq offset estimation during streaming mode acquisition.
#}
function foff_est = est_freq_offset_known_corr(states, rx, known_samples, t_est, dual=1)
ofdm_load_const;
Npsam = length(known_samples);
% extract pilot samples from either end of frame
rx1 = rx(t_est:t_est+Npsam-1); rx2 = rx(t_est+Nsamperframe:t_est+Nsamperframe+Npsam-1);
% "mix" these down (correlate) with 0 Hz offset pilot samples
corr_st = rx1 .* conj(known_samples);
if dual
corr_en = rx2 .* conj(known_samples);
end
% sample sum of DFT magnitude of correlated signals at each freq offset and look for peak
st = -20; en = 20; foff_est = 0; Cabs_max = 0;
for f=st:en
w = 2*pi*f/Fs;
C_st = corr_st * exp(j*w*(0:Npsam-1))';
C_en = 0;
if dual
C_en = corr_en * exp(j*w*(0:Npsam-1))';
end
Cabs = abs(C_st) + abs(C_en);
%printf("f: %4.1f Cabs: %f Cmax: %f\n", f, Cabs, Cabs_max);
if Cabs > Cabs_max
Cabs_max = Cabs;
foff_est = f;
end
end
if states.verbose > 1
printf(" foff_est: %f\n", foff_est);
end
endfunction
% Joint estimation used for data mode burst acquistion
function [t_est foff_est timing_mx] = est_timing_and_freq(states, rx, known_samples, tstep, fmin, fmax, fstep)
ofdm_load_const;
Npsam = length(known_samples);
Ncorr = length(rx) - Npsam + 1;
corr = zeros(1,Ncorr);
% set up matrix of freq shifted known samples for correlation with received signal. Each row
% is the known samples shifted by a different freq offset
M = [];
for afcoarse=fmin:fstep:fmax
w = 2*pi*afcoarse/Fs;
wvec = exp(j*w*(0:Npsam-1));
M = [M; known_samples .* wvec];
end
% At each timing position, correlate with known samples at all possible freq offsets. Result
% is a column vector for each timing offset. Each matrix cell is a freq,timing coordinate
corr = [];
for t=1:tstep:Ncorr
rx1 = rx(t:t+Npsam-1);
col = M * rx1';
corr = [corr, col];
end
% best timing offset is the col with the global max of the corr matrix
max_col = max(abs(corr));
[mx mx_col] = max(max_col);
t_est = (mx_col-1)*tstep;
% obtain normalised real number for timing mx
mag1 = known_samples*known_samples';
mag2 = rx(t_est+1:t_est+Npsam)*rx(t_est+1:t_est+Npsam)';
timing_mx = mx*mx'/(mag1*mag2+1E-12);
% determine frequency offset for row where max is located
[tmp freq_row] = max(corr(:,mx_col));
foff_est = fmin + fstep*(freq_row-1);
if verbose > 1
printf(" t_est: %d timing:mx: %f foff_est: %f\n", t_est, timing_mx, foff_est);
end
if verbose > 2
figure(10); clf;
subplot(211); plot(rx)
subplot(212); plot(corr)
figure(11); clf; plot(real(known_samples));
end
endfunction
% streaming mode acquistion, used mainly for voice modes
function [timing_valid states] = ofdm_sync_search_stream(states)
ofdm_load_const;
st = rxbufst + M+Ncp + Nsamperframe + 1; en = st + 2*Nsamperframe + M+Ncp - 1;
% Attempt coarse timing estimate (i.e. detect start of frame) at a range of frequency offsets
timing_mx = 0; fcoarse = 0; timing_valid = 0; ct_est = 1;
for afcoarse=-40:40:40
% vector of local oscillator samples to shift input vector
% these could be computed on the fly to save memory, or pre-computed in flash at tables as they are static
if afcoarse != 0
w = 2*pi*afcoarse/Fs;
wvec = exp(-j*w*(0:2*Nsamperframe+M+Ncp-1));
% choose best timing offset metric at this freq offset
[act_est atiming_valid atiming_mx] = est_timing(states, wvec .* states.rxbuf(st:en), states.rate_fs_pilot_samples, 2);
else
% exp(-j*0) is just 1 when afcoarse is 0
[act_est atiming_valid atiming_mx] = est_timing(states, states.rxbuf(st:en), states.rate_fs_pilot_samples, 2);
end
%printf("afcoarse: %f atiming_mx: %f\n", afcoarse, atiming_mx);
if atiming_mx > timing_mx
ct_est = act_est;
timing_valid = atiming_valid;
timing_mx = atiming_mx;
fcoarse = afcoarse;
end
end
% refine freq est within -/+ 20 Hz window
if fcoarse != 0
w = 2*pi*fcoarse/Fs;
wvec = exp(-j*w*(0:2*Nsamperframe+M+Ncp-1));
foff_est = est_freq_offset_known_corr(states, wvec .* states.rxbuf(st:en), states.rate_fs_pilot_samples, ct_est);
foff_est += fcoarse;
else
% exp(-j*0) is just 1 when fcoarse is 0
foff_est = est_freq_offset_known_corr(states, states.rxbuf(st:en), states.rate_fs_pilot_samples, ct_est);
end
if verbose
printf(" ct_est: %4d mx: %3.2f coarse_foff: %5.1f timing_valid: %d", ct_est, timing_mx, foff_est, timing_valid);
end
if timing_valid
states.nin = ct_est - 1;
else
states.nin = Nsamperframe;
end
states.timing_valid = timing_valid;
states.timing_mx = timing_mx;
states.coarse_foff_est_hz = foff_est;
states.sample_point = states.timing_est = 1;
endfunction
% two stage acquisition detector for burst mode
function results = burst_acquisition_detector(states, rx, n, known_sequence)
ofdm_load_const;
% initial search over coarse grid
tstep = 4; fstep = 5;
[ct_est foff_est timing_mx] = est_timing_and_freq(states, rx(n:n+2*Nsamperframe-1), known_sequence,
tstep, fmin = -50, fmax = 50, fstep);
% refine estimate over finer grid
fmin = foff_est - ceil(fstep/2); fmax = foff_est + ceil(fstep/2);
fine_st = max(1, n + ct_est - tstep/2); fine_en = fine_st + Nsamperframe + tstep - 1;
[ct_est foff_est timing_mx] = est_timing_and_freq(states, rx(fine_st:fine_en), known_sequence, 1, fmin, fmax, 1);
% refer ct_est to nominal start of frame rx_buf(n)
ct_est += fine_st - n;
results.ct_est = ct_est; results.foff_est = foff_est; results.timing_mx = timing_mx;
end
% Burst mode acquisition ------------------------------------------
function [timing_valid states] = ofdm_sync_search_burst(states)
ofdm_load_const;
pre_post = "";
st = rxbufst + M+Ncp + Nsamperframe + 1; en = st + 2*Nsamperframe - 1;
pre = burst_acquisition_detector(states, states.rxbuf, st, states.tx_preamble);
if states.postambledetectoren
post = burst_acquisition_detector(states, states.rxbuf, st, states.tx_postamble);
end
if isfield(states,"postambletest") pre.timing_mx = 0; end % force ignore preamble to test postamble
if (states.postambledetectoren == 0) || (pre.timing_mx > post.timing_mx)
timing_mx = pre.timing_mx; ct_est = pre.ct_est; foff_est = pre.foff_est;
pre_post = "pre";
else
timing_mx = post.timing_mx; ct_est = post.ct_est; foff_est = post.foff_est;
pre_post = "post";
end
timing_valid = timing_mx > timing_mx_thresh;
if timing_valid
% potential candidate found ....
% calculate number of samples we need on next buffer to get into sync
if strcmp(pre_post, "post")
states.nin = 0;
% printf("\n rxbufst: %d ", states.rxbufst);
states.rxbufst -= states.Np*states.Nsamperframe; % backup to first modem frame in packet
states.rxbufst += ct_est - 1;
states.npost++;
% printf("%d\n", states.rxbufst);
else
% ct_est is start of preamble, so advance past that to start of first modem frame
states.nin = Nsamperframe + ct_est - 1;
states.npre++;
end
else
states.nin = Nsamperframe;
end
states.ct_est = ct_est;
states.timing_valid = timing_valid;
states.timing_mx = timing_mx;
states.sample_point = states.timing_est = 1;
states.foff_est_hz = foff_est;
if verbose
printf(" ct_est: %4d nin: %4d mx: %3.2f foff_est: %5.1f timing_valid: %d %4s",
ct_est, states.nin, timing_mx, foff_est, timing_valid, pre_post);
end
endfunction
% ----------------------------------------------------------------------------------
% ofdm_sync_search - attempts to find coarse sync parameters for modem initial sync
% ----------------------------------------------------------------------------------
function [timing_valid states] = ofdm_sync_search(states, rxbuf_in)
ofdm_load_const;
% update rxbuf so it is primed for when we have to call ofdm_demod()
states.rxbuf(1:Nrxbuf-states.nin) = states.rxbuf(states.nin+1:Nrxbuf);
states.rxbuf(Nrxbuf-states.nin+1:Nrxbuf) = rxbuf_in;
if strcmp(states.data_mode, "burst")
[timing_valid states] = ofdm_sync_search_burst(states);
else
[timing_valid states] = ofdm_sync_search_stream(states);
end
endfunction
% ------------------------------------------
% ofdm_demod - Demodulates one frame of bits
% ------------------------------------------
#{
For phase estimation we need to maintain buffer of 3 frames plus
one pilot, so we have 4 pilots total. '^' is the start of current
frame that we are demodulating.
P DDD P DDD P DDD P
^
Then add one symbol either side to account for movement in
sampling instant due to sample clock differences:
D P DDD P DDD P DDD P D
^
Returns:
rx_bits - (hard decoded/raw/uncoded) demodulated data bits from packet
aphase_est - phase est for each data symbol
rx_np - output data symbols after phase correction
rx_amp - amplitude estimates for each symbol
#}
function [states rx_bits achannel_est_rect_log rx_np rx_amp] = ofdm_demod(states, rxbuf_in)
ofdm_load_const;
% insert latest input samples into rxbuf
rxbuf(1:Nrxbuf-states.nin) = rxbuf(states.nin+1:Nrxbuf);
rxbuf(Nrxbuf-states.nin+1:Nrxbuf) = rxbuf_in;
% get latest freq offset estimate
woff_est = 2*pi*foff_est_hz/Fs;
% update timing estimate --------------------------------------------------
delta_t = coarse_foff_est_hz = timing_valid = timing_mx = 0;
if timing_en
% update timing at start of every frame
% search for timing in a window centered on timing_est, the window will typically be around 2Ncp wide as we could
% get a shift of +Ncp or -Ncp if we swing from one delay extreme to another
st = rxbufst + M+Ncp + Nsamperframe + 1 - floor(ftwindow_width/2) + (timing_est-1);
en = st + Nsamperframe-1 + M+Ncp + ftwindow_width-1;
[ft_est timing_valid timing_mx] = est_timing(states, rxbuf(st:en) .* exp(-j*woff_est*(st:en)), rate_fs_pilot_samples, 1);
% printf(" timing_est: %d ft_est: %d timing_valid: %d timing_mx: %d\n", timing_est, ft_est, timing_valid, timing_mx);
% if we are in a deep fade timing_valid will not be asserted as ft_est will be garbage, so we don't
% adjust timing est, just freewheel for now
if timing_valid
% adjust timing_est based on ft_est
timing_est = timing_est + ft_est - ceil(ftwindow_width/2);
% Track the ideal sampling point, which is Ncp for a multipath signal whose delay varies between 0 and Ncp. The
% timing est will be bouncing back and forth due to multipath so we may need to use the upper or lower limit of
% the timing est to track the ideal sample_point. A good way to explore this algorithm is to disable the feedback
% loop for nin adjustment below, and look at the plots from ofdm_rx with +ve and -ve sample clock offsets
% (sox can be used to resample). The "4" constants are small guard bands so we don't stumble outside of the CP
% due to noise.
delta_t = ft_est - ceil(ftwindow_width/2); % just used for plotting
sample_point = max(timing_est+4, sample_point); % we are at max timing est, so sample point just above
sample_point = min(timing_est+Ncp-4, sample_point); % we are at min timing_est, so sample point Ncp above
end
if verbose > 1
printf(" ft_est: %2d mx: %3.2f coarse_foff: %4.1f foff: %4.1f\n", ft_est, timing_mx, coarse_foff_est_hz, foff_est_hz);
end
end
% down convert at current timing instant----------------------------------
rx_sym = zeros(1+Ns+1+1, Nc+2);
% previous pilot
st = rxbufst + M+Ncp + Nsamperframe + (-Ns)*(M+Ncp) + 1 + sample_point; en = st + M - 1;
for c=1:Nc+2
acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:));
rx_sym(1,c) = sum(acarrier);
end
% pilot - this frame - pilot
for rr=1:Ns+1
st = rxbufst + M+Ncp + Nsamperframe + (rr-1)*(M+Ncp) + 1 + sample_point; en = st + M - 1;
for c=1:Nc+2
acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:));
rx_sym(rr+1,c) = sum(acarrier);
end
end
% next pilot
st = rxbufst + M+Ncp + Nsamperframe + (2*Ns)*(M+Ncp) + 1 + sample_point; en = st + M - 1;
for c=1:Nc+2
acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:));
rx_sym(Ns+3,c) = sum(acarrier);
end
% est freq err based on all carriers ------------------------------------
if foff_est_en
freq_err_rect = sum(rx_sym(2,:))' * sum(rx_sym(2+Ns,:));
% prevent instability in atan(im/re) when real part near 0
freq_err_rect += 1E-6;
%printf("freq_err_rect: %f %f angle: %f\n", real(freq_err_rect), imag(freq_err_rect), angle(freq_err_rect));
freq_err_hz = angle(freq_err_rect)*Rs/(2*pi*Ns);
if states.foff_limiter
freq_err_hz = max(freq_err_hz,-1);
freq_err_hz = min(freq_err_hz, 1);
end
foff_est_hz = foff_est_hz + foff_est_gain*freq_err_hz;
end
% OK - now channel for each carrier and correct phase ----------------------------------
achannel_est_rect = zeros(1,Nc+2);
aamp_est_pilot = zeros(1,Nc+2);
for c=2:Nc+1
% estimate channel for this carrier using an average of 12 pilots
% in a rect 2D window centred on this carrier
% PPP <-- frame-1
% ---
% PPP <-- you are here
% DDD
% DDD
% PPP <-- frame+1
% ---
% PPP <-- frame+2
if isfield(states, "phase_est_bandwidth")
phase_est_bandwidth = states.phase_est_bandwidth;
else
phase_est_bandwidth = "low";
end
if strcmp(phase_est_bandwidth, "high")
% Only use pilots at start and end of this frame to track quickly changes in phase
% present. Useful for initial sync where freq offset est may be a bit off, and
% for high Doppler channels. As less pilots are averaged, low SNR performance
% will be poorer.
achannel_est_rect(c) = rx_sym(2,c)*pilots(c)'; % frame
achannel_est_rect(c) += rx_sym(2+Ns,c)*pilots(c)'; % frame+1
aamp_est_pilot(c) = abs(rx_sym(2,c)) + abs(rx_sym(2+Ns,c));
elseif strcmp(phase_est_bandwidth, "low")
% Average over a bunch of pilots in adjacent carriers, and past and future frames, good
% low SNR performance, but will fall over with high Doppler or freq offset.
cr = c-1:c+1;
achannel_est_rect(c) = rx_sym(2,cr)*pilots(cr)'; % frame
achannel_est_rect(c) += rx_sym(2+Ns,cr)*pilots(cr)'; % frame+1
aamp_est_pilot(c) = sum(abs(rx_sym(2,cr)));
aamp_est_pilot(c) += sum(abs(rx_sym(2+Ns,cr)));
% use next step of pilots in past and future
achannel_est_rect(c) += rx_sym(1,cr)*pilots(cr)'; % frame-1
achannel_est_rect(c) += rx_sym(2+Ns+1,cr)*pilots(cr)'; % frame+2
aamp_est_pilot(c) += sum(abs(rx_sym(1,cr)));
aamp_est_pilot(c) += sum(abs(rx_sym(2+Ns+1,cr)));
end
end
% pilots are estimated over 12 pilot symbols, so find average
if strcmp(phase_est_bandwidth, "high")
achannel_est_rect /= 2;
aamp_est_pilot /= 2;
elseif strcmp(phase_est_bandwidth, "low")
achannel_est_rect /= 12;
aamp_est_pilot /= 12;
end
aphase_est_pilot = angle(achannel_est_rect);
if states.amp_est_mode == 0
% legacy 700D/2020 ampl estimator for compatibility with current C code
aamp_est_pilot = abs(achannel_est_rect);
end
achannel_est_rect = aamp_est_pilot.*exp(j*aphase_est_pilot);
% correct phase offset using phase estimate, and demodulate
% bits, separate loop as it runs across cols (carriers) to get
% frame bit ordering correct
rx_bits = []; rx_np = []; rx_amp = []; achannel_est_rect_log = [];
for rr=1:Ns-1
for c=2:Nc+1
if phase_est_en
if states.dpsk
rx_corr = rx_sym(rr+2,c) * rx_sym(rr+1,c)';
else
rx_corr = rx_sym(rr+2,c) * exp(-j*aphase_est_pilot(c));
end
else
rx_corr = rx_sym(rr+2,c);
end
rx_np = [rx_np rx_corr];
rx_amp = [rx_amp aamp_est_pilot(c)];
% hard decision demod
if bps == 1 abit = real(rx_corr) > 0; end
if bps == 2 abit = qpsk_demod(rx_corr); end
if bps == 4 abit = qam16_demod(states.qam16, rx_corr, max(1E-12,aamp_est_pilot(c))); end
rx_bits = [rx_bits abit];
end % c=2:Nc+1
achannel_est_rect_log = [achannel_est_rect_log; achannel_est_rect(2:Nc+1)];
end
% Adjust nin to take care of sample clock offset. When debugong or exploring how timing loop works
% it's a good idea to comment out this code to "open the loop".
nin = Nsamperframe;
if timing_en && timing_valid
states.clock_offset_est = 0.9*states.clock_offset_est + 0.1*abs(states.timing_est - timing_est)/Nsamperframe;
thresh = (M+Ncp)/8;
tshift = (M+Ncp)/4;
if timing_est > thresh
nin = Nsamperframe+tshift;
timing_est -= tshift;
sample_point -= tshift;
end
if timing_est < -thresh
nin = Nsamperframe-tshift;
timing_est += tshift;
sample_point += tshift;
end
end
% use internal rxbuf samples if they are available
rxbufst_next = rxbufst + nin;
%printf("\nrxbufst: %d rxbufst_next: %d nin: %d Nrxbufmin: %d rqd: %d Nrxbuf: %d\n",
% rxbufst, rxbufst_next, nin, Nrxbufmin, rxbufst_next + Nrxbufmin, Nrxbuf);
if rxbufst_next + Nrxbufmin <= Nrxbuf
% printf("Can maybe use rxbufst!\n");
rxbufst = rxbufst_next;
nin = 0;
end
% maintain mean amp estimate for LDPC decoder
states.mean_amp = 0.9*states.mean_amp + 0.1*mean(rx_amp);
states.rx_sym = rx_sym;
states.rxbuf = rxbuf;
states.nin = nin;
states.rxbufst = rxbufst;
states.timing_valid = timing_valid;
states.timing_mx = timing_mx;
states.timing_est = timing_est;
states.sample_point = sample_point;
states.delta_t = delta_t;
states.foff_est_hz = foff_est_hz;
states.coarse_foff_est_hz = coarse_foff_est_hz; % just used for tofdm
endfunction
function SNR3kdB = snr_from_esno(states, EsNodB)
ofdm_load_const;
% We integrate over M samples to get the received symbols. Additional signal power
% is used for the cyclic prefix samples.
cyclic_power = 10*log10((Ncp+M)/M);
% Es is the energy for each symbol. To get signal power lets
% multiply by symbols/second, and calculate noise power in 3000 Hz.
SNR3kdB = EsNodB + 10*log10(Nc*Rs/3000) + cyclic_power;
endfunction
% ----------------------------------------------------------------------------------
% assemble_modem_packet - assemble modem packet from UW, payload, and txt bits
% ----------------------------------------------------------------------------------
function modem_frame = assemble_modem_packet(states, payload_bits, txt_bits)
ofdm_load_const;
# Due to the operation of the FEC encoder or interleaver, Tx data
# usually comes in "packet size" chunks, so assembly operates on an
# entire packet (multiple modem frames if Np>1)
p = 1; u = 1;
modem_frame = zeros(1,Nbitsperpacket);
for b=1:Nbitsperpacket-Ntxtbits;
if (u <= Nuwbits) && (b == uw_ind(u))
modem_frame(b) = tx_uw(u++);
else
modem_frame(b) = payload_bits(p++);
end
end
t = 1;
for b=Nbitsperpacket-Ntxtbits+1:Nbitsperpacket
modem_frame(b) = txt_bits(t++);
end
assert(u == (Nuwbits+1));
assert(p = (length(payload_bits)+1));
endfunction
% ----------------------------------------------------------------------------------
% assemble_modem_packet_symbols - assemble modem packet from UW, payload, and txt bits
% ----------------------------------------------------------------------------------
function modem_frame = assemble_modem_packet_symbols(states, payload_syms, txt_syms)
ofdm_load_const;
Nsymsperpacket = Nbitsperpacket/bps;
Nuwsyms = Nuwbits/bps;
Ntxtsyms = Ntxtbits/bps;
modem_frame = zeros(1,Nsymsperpacket);
p = 1; u = 1;
for s=1:Nsymsperpacket-Ntxtsyms;
if (u <= Nuwsyms) && (s == uw_ind_sym(u))
modem_frame(s) = states.tx_uw_syms(u++);
else
modem_frame(s) = payload_syms(p++);
end
end
t = 1;
for s=Nsymsperpacket-Ntxtsyms+1:Nsymsperpacket
modem_frame(s) = txt_syms(t++);
end
assert(u == (Nuwsyms+1));
assert(p = (length(payload_syms)+1));
endfunction
% ------------------------------------------------------------------------------------------------
% extract_uw - extract just the UW from the first few frames of a packet, to check UW
% during acquisition
% -------------------------------------------------------------------------------------------------
function rx_uw = extract_uw(states, rx_syms, rx_amps)
ofdm_load_const;
Nsymsperframe = Nbitsperframe/bps;
assert(length(rx_syms) == Nuwframes*Nsymsperframe);
Nuwsyms = Nuwbits/bps;
rx_uw_syms = zeros(1,Nuwsyms);
rx_uw_amps = zeros(1,Nuwsyms);
u = 1;
for s=1:Nuwframes*Nsymsperframe
if (u <= Nuwsyms) && (s == uw_ind_sym(u))
rx_uw_syms(u) = rx_syms(s);
rx_uw_amps(u) = rx_amps(s);
u++;
end
end
assert(u == (Nuwsyms+1));
% now demodulate UW bits
rx_uw = zeros(1,Nuwbits);
for s=1:Nuwsyms
if bps == 2
rx_uw(bps*(s-1)+1:bps*s) = qpsk_demod(rx_uw_syms(s));
elseif bps == 4
rx_uw(bps*(s-1)+1:bps*s) = qam16_demod(states.qam16,rx_uw_syms(s), max(1E-12,rx_amps(s)));
end
end
endfunction
% ------------------------------------------------------------------------------------------------
% disassemble_modem_packet - extract UW, txt bits, and payload symbols from a packet of symbols
% -------------------------------------------------------------------------------------------------
function [rx_uw payload_syms payload_amps txt_bits] = disassemble_modem_packet(states, modem_frame_syms, modem_frame_amps)
ofdm_load_const;
Nsymsperpacket = Nbitsperpacket/bps;
Nuwsyms = Nuwbits/bps;
Ntxtsyms = Ntxtbits/bps;
payload_syms = zeros(1,Nsymsperpacket-Nuwsyms-Ntxtsyms);
payload_amps = zeros(1,Nsymsperpacket-Nuwsyms-Ntxtsyms);
rx_uw_syms = zeros(1,Nuwsyms);
rx_uw_amps = zeros(1,Nuwsyms);
txt_syms = zeros(1,Ntxtsyms);
p = 1; u = 1;
for s=1:Nsymsperpacket-Ntxtsyms;
if (u <= Nuwsyms) && (s == uw_ind_sym(u))
rx_uw_syms(u) = modem_frame_syms(s);
rx_uw_amps(u) = modem_frame_amps(s);
u++;
else
payload_syms(p) = modem_frame_syms(s);
payload_amps(p++) = modem_frame_amps(s);
end
end
t = 1;
for s=Nsymsperpacket-Ntxtsyms+1:Nsymsperpacket
txt_syms(t++) = modem_frame_syms(s);
end
assert(u == (Nuwsyms+1));
assert(p = (Nsymsperpacket+1));
% now demodulate UW and txt bits
rx_uw = zeros(1,Nuwbits);
txt_bits = zeros(1,Ntxtbits);
for s=1:Nuwsyms
if bps == 2
rx_uw(bps*(s-1)+1:bps*s) = qpsk_demod(rx_uw_syms(s));
elseif bps == 4
rx_uw(bps*(s-1)+1:bps*s) = qam16_demod(states.qam16,rx_uw_syms(s),rx_uw_amps(s));
end
end
for s=1:Ntxtsyms
txt_bits(2*s-1:2*s) = qpsk_demod(txt_syms(s));
end
endfunction
%-----------------------------------------------------------------------
% ofdm_rand - a psuedo-random number generator that we can implement
% in C with identical results to Octave. Returns an unsigned
% int between 0 and 32767
%-----------------------------------------------------------------------
function r = ofdm_rand(n, seed=1)
r = zeros(1,n);
for i=1:n
seed = mod(1103515245 * seed + 12345, 32768);
r(i) = seed;
end
endfunction
% build a single modem frame preamble vector for reliable single frame acquisition
% on data modes
function tx_preamble = ofdm_generate_preamble(states, seed=2)
tmp_states = states;
% tweak local copy of states so we can generate a 1 modem-frame packet
tmp_states.Np = 1; tmp_states.Nbitsperpacket = tmp_states.Nbitsperframe;
preamble_bits = ofdm_rand(tmp_states.Nbitsperframe, seed) > 16384;
tx_preamble = ofdm_mod(tmp_states, preamble_bits);
endfunction
% ------------------------------------------------------------------------------
% Handle FEC encoding/decoding
% ------------------------------------------------------------------------------
function [frame_bits bits_per_frame] = fec_encode(states, code_param, mode, payload_bits)
ofdm_load_const;
if code_param.data_bits_per_frame != code_param.ldpc_data_bits_per_frame
% optionally lower the code rate by "one stuffing" - setting Nunused data bits to 1
Nunused = code_param.ldpc_data_bits_per_frame - code_param.data_bits_per_frame;
frame_bits = LdpcEncode([payload_bits ones(1,Nunused)], code_param.H_rows, code_param.P_matrix);
% remove unused data bits from codeword, as they are known to the receiver and don't need to be transmitted
frame_bits = [ frame_bits(1:code_param.data_bits_per_frame) frame_bits(code_param.ldpc_data_bits_per_frame+1:end) ];
else
frame_bits = LdpcEncode(payload_bits, code_param.H_rows, code_param.P_matrix);
end
bits_per_frame = length(frame_bits);
endfunction
function [rx_bits paritychecks] = fec_decode(states, code_param, ...
payload_syms_de, payload_amps_de, ...
mean_amp, EsNo)
ofdm_load_const;
% note ldpc_dec() handles optional lower code rate zero-stuffing
[rx_codeword paritychecks] = ldpc_dec(code_param, mx_iter=100, demod=0, dec=0, ...
payload_syms_de/mean_amp, EsNo,
payload_amps_de/mean_amp);
rx_bits = rx_codeword(1:code_param.data_bits_per_frame);
endfunction
function [tx nclipped] = ofdm_clip(states, tx, threshold_level, plot_en=0)
ofdm_load_const;
tx_ = tx;
ind = find(abs(tx) > threshold_level);
nclipped = length(ind);
tx(ind) = threshold_level*exp(j*angle(tx(ind)));
if plot_en
figure(2); clf; plot(abs(tx_(1:5*M))); hold on; plot(abs(tx(1:5*M))); hold off;
endif
end
% two stage Hilbert clipper to improve PAPR
function tx = ofdm_hilbert_clipper(states, tx, tx_clip_en)
tx *= states.amp_scale;
% optional compressor to improve PAPR
nclipped = 0;
if tx_clip_en
if states.verbose
printf("%f %f\n", states.clip_gain1, states.clip_gain2);
end
[tx nclipped] = ofdm_clip(states, tx*states.clip_gain1, states.ofdm_peak);
cutoff_norm = states.txbpf_width_Hz/states.Fs;
w_centre = mean(states.w); centre_norm = w_centre/(2*pi);
tx = ofdm_complex_bandpass_filter(cutoff_norm, centre_norm,100,tx);
% filter messes up peak levels use this to get us back to approx 16384
tx *= states.clip_gain2;
end
% Hilbert Clipper 2 - remove any really low probability outliers after clipping/filtering
% even on vanilla Tx
[tx tmp] = ofdm_clip(states, tx, states.ofdm_peak);
% note this is PAPR of complex signal, PAPR of real signal will be 3dB-ish larger
peak = max(abs(tx)); RMS = sqrt(mean(abs(tx).^2));
cpapr = 10*log10((peak.^2)/(RMS.^2));
if states.verbose
printf("Peak: %4.2f RMS: %5.2f CPAPR: %4.2f clipped: %5.2f%%\n",
peak, RMS, cpapr, nclipped*100/length(tx));
end
endfunction
% Complex bandpass filter built from low pass prototype as per src/filter.c,
% cutoff_freq and center_freq are normalised such that cutoff_freq = 0.5 is Fs/2
function out = ofdm_complex_bandpass_filter(cutoff_freq,center_freq,n_coeffs,in)
lowpass_coeff = fir1(n_coeffs-1, cutoff_freq);
k = (0:n_coeffs-1);
bandpass_coeff = lowpass_coeff .* exp(j*2*pi*center_freq*k);
out = filter(bandpass_coeff,1,in);
endfunction
% Complex bandpass filter for Rx - just used on the very low SNR modes to help
% with acquisition
function [rx delay_samples] = ofdm_rx_filter(states, mode, rx)
delay_samples = 0;
if strcmp(mode,"datac4") || strcmp(mode,"datac13") || strcmp(mode,"datac14")
w_centre = mean(states.w); centre_norm = w_centre/(2*pi);
n_coeffs = 100;
cutoff_Hz = 400; cutoff_norm = cutoff_Hz/states.Fs;
rx = ofdm_complex_bandpass_filter(cutoff_norm,centre_norm,n_coeffs,rx);
delay_samples = n_coeffs/2;
end
endfunction
% returns an unpacked CRC16 (array of 16 bits) calculated from an array of unpacked bits
function unpacked_crc16 = crc16_unpacked(unpacked_bits)
% pack into bytes
mod(length(unpacked_bits),8);
assert(mod(length(unpacked_bits),8) == 0);
nbytes = length(unpacked_bits)/8;
mask = 2 .^ (7:-1:0);
for i=1:nbytes
st = (i-1)*8 + 1; en = st+7;
bytes(i) = sum(mask .* unpacked_bits(st:en));
end
crc16_hex = crc16(bytes);
crc16_dec = [hex2dec(crc16_hex(1:2)) hex2dec(crc16_hex(3:4)) ];
unpacked_crc16 = [];
for b=1:length(crc16_dec)
unpacked_crc16 = [unpacked_crc16 bitand(crc16_dec(b), mask) > 0];
end
endfunction
|