aboutsummaryrefslogtreecommitdiff
path: root/octave/rf_vhf_amp.m
blob: 8c5186af8a51e61efe8e9112a7a10bab1d3126d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
% s_param_rf.m
%
% David Rowe Nov 2015
%
% Working for small signal VHF amplifier design using
% S-param techniques from "RF Circuit Design" by Chris Bowick

rfdesign; % library of helped functions

more off;

Ic = 0.014;

% BRF92 VCE=5V Ic=5mA 100MHz
 
if Ic == 0.005
  S11 = 0.727*exp(j*(-43)*pi/180);
  S12 = 0.028*exp(j*(69.6)*pi/180);
  S21 = 12.49*exp(j*(147)*pi/180);
  S22 = 0.891*exp(j*(-16)*pi/180);
end

% BRF92 VCE=10V Ic=14mA 100MHz

if Ic == 0.02
  S11 = 0.548*exp(j*(-56.8)*pi/180);
  S12 = 0.020*exp(j*(67.8)*pi/180);
  S21 = 20.43*exp(j*(133.7)*pi/180);
  S22 = 0.796*exp(j*(-18.5)*pi/180);
end

% Stability

Ds = S11*S22-S12*S21;
Knum = 1 + abs(Ds)^2 - abs(S11)^2 - abs(S22)^2;
Kden = 2*abs(S21)*abs(S12);
K = Knum/Kden                                    % If > 1 unconditionally stable
                                                 % If < 1 panic
figure(1);
clf
scCreate;

if K < 1
  C1 = S11 - Ds*conj(S22);
  C2 = S22 - Ds*conj(S11);
  rs1 = conj(C1)/(abs(S11)^2-abs(Ds)^2);           % centre of input stability circle
  ps1 = abs(S12*S21/(abs(S11)^2-abs(Ds)^2));       % radius of input stability circle
  rs2 = conj(C2)/(abs(S22)^2-abs(Ds)^2);           % centre of input stability circle
  ps2 = abs(S12*S21/(abs(S22)^2-abs(Ds)^2));       % radius of input stability circle

  s(1,1)=S11; s(1,2)=S12; s(2,1)=S21; s(2,2)=S22;
  plotStabilityCircles(s)
end

% Gain circle

D2 = abs(S22)^2-abs(Ds)^2;
C2 = S22 - Ds*conj(S11);
GdB = 20; Glin = 10^(GdB/10);                                         % lets shoot for 20dB gain
G = Glin/(abs(S21)^2);
r0 = G*conj(C2)/(1+D2*G);                                             % centre of gain circle
p0 = sqrt(1 - 2*K*abs(S12*S21)*G + (abs(S12*S21)^2)*(G^2))/(1+D2*G);  % radius of gain circle

scAddCircle(abs(r0),angle(r0)*180/pi,p0,'g')
printf("Green is the %3.1f dB constant gain circle for gammaL\n",GdB);

% Note different design procedures for different operating points

if Ic == 0.005
  % Choose a gammaL on the gain circle

  gammaL = 0.8 - 0.4*j;

  % Caclulate gammaS and make sure it's stable by visual inspection
  % compared to stability circle.

  gammaS = conj(S11 + ((S12*S21*gammaL)/(1 - (gammaL*S22))));
end

if Ic == 0.014

  % lets set zo (normalised Zo) based on Pout and get gammaL from that

  Pout = 0.01;
  Irms = 0.002;
  Zo = Pout/(Irms*Irms);
  zo = Zo/50;
  [magL,angleL] = ztog(zo);
  gammaL = magL*exp(j*angleL*pi/180);

  % calculate gammaS

  gammaS = conj(S11 + ((S12*S21*gammaL)/(1 - (gammaL*S22))));

end

[zo Zo] = gtoz(abs(gammaL), angle(gammaL)*180/pi,50);
[zi Zi] = gtoz(abs(gammaS), angle(gammaS)*180/pi,50);

scAddPoint(zi);
scAddPoint(zo);

% Transducer gain

Gt_num = (abs(S21)^2)*(1-abs(gammaS)^2)*(1-abs(gammaL)^2);
Gt_den = abs((1-S11*gammaS)*(1-S22*gammaL) - S12*S21*gammaL*gammaS)^2;
Gt = Gt_num/Gt_den;

if Ic == 0.005

  % Lets design the z match for the input ------------------------------

  % put input impedance in parallel form

  Zip = zs_to_zp(Zi);

  % first match real part of impedance

  Rs = 50; Rl = real(Zip);
  [Xs Xp] = z_match(Rs,Rl);
  
  % Modify Xp so transistor input sees conjugate match to Zi
  % Lets make Xp a capacitor, so negative sign

  Xp_match = -Xp - imag(Zip);

  % Now convert to real component values

  w = 2*pi*150E6;
  Ls = Xs/w; diameter_mm = 6.25; 
  Ls_turns = design_inductor(Ls*1E6, diameter_mm);
  Cp = 1/(w*(-Xp_match));

  printf("Transducer gain: %3.1f dB\n", 10*log10(Gt));
  printf("Input: Zi = %3.1f + %3.1fj ohms\n", real(Zi), imag(Zi));
  printf("       In parallel form Rp = %3.1f Xp = %3.1fj ohms\n", real(Zip), imag(Zip));
  printf("       So for a conjugate match transistor input wants to see:\n         Rp = %3.1f Xp = %3.1fj ohms\n", real(Zip), -imag(Zip));
  printf("       Rs = %3.1f to Rl = %3.1f ohm matching network Xs = %3.1fj Xp = %3.1fj\n", Rs, Rl, Xs, Xp);
  printf("       with conj match to Zi Xs = %3.1fj Xp = %3.1fj\n", Xs, Xp_match);
  printf("       matching components Ls = %5.3f uH Cp = %4.1f pF\n", Ls*1E6, Cp*1E12);
  printf("       Ls can be made from %3.1f turns on a %4.2f mm diameter air core\n", Ls_turns, diameter_mm);

  % Now Z match for output -------------------------------------

  Lo = -imag(Zo)/w;
  Lo_turns = design_inductor(Lo*1E6, diameter_mm);
  printf("Output: Zo = %3.1f + %3.1fj ohms\n", real(Zo), imag(Zo));
  printf("        So for a conjugate match transistor output wants to see:\n          Rl = %3.1f Xl = %3.1fj ohms\n", real(Zo), -imag(Zo));
  printf("        Which is a series inductor Lo = %5.3f uH\n", Lo*1E6);
  printf("        Lo can be made from %3.1f turns on a %4.2f mm diameter air core\n", Lo_turns, diameter_mm);
end


if Ic == 0.014
  printf("Transducer gain: %3.1f dB\n", 10*log10(Gt));

  % Lets design the z match for the input ------------------------------

  % put input impedance in parallel form

  Zip = zs_to_zp(Zi);

  % first match real part of impedance

  Rs = 50; Rl = real(Zip);
  [Xs Xp] = z_match(Rl,Rs);
  
  % Lets make Xs a capacitir to block DC, so Xp is an inductor.
  % Modify Xs so transistor input sees conjugate match to Zi. Xs is a
  % capacitor, so reactance is negative

  Xs_match = -Xs - imag(Zip);

  % Now convert to real component values

  w = 2*pi*150E6; diameter_mm = 6.25; 
  Li = Xp/w;
  Li_turns = design_inductor(Li*1E6, diameter_mm);
  Ci = 1/(w*(-Xs_match));

  printf("Input: Zi = %3.1f + %3.1fj ohms\n", real(Zi), imag(Zi));
  printf("       In parallel form Rp = %3.1f Xp = %3.1fj ohms\n", real(Zip), imag(Zip));
  printf("       So for a conjugate match transistor input wants to see:\n         Rp = %3.1f Xp = %3.1fj ohms\n", real(Zip), -imag(Zip));
  printf("       Rs = %3.1f to Rl = %3.1f ohm matching network Xs = %3.1fj Xp = %3.1fj\n", Rs, Rl, Xs, Xp);
  printf("         with Xs a capacitor, and Xp and inductor Xs = %3.1fj Xp = %3.1fj\n", -Xs, Xp);
  printf("       With a conj match to Zi Xs = %3.1fj Xp = %3.1fj\n", Xs_match, Xp);
  printf("       matching components Li = %5.3f uH Ci = %4.1f pF\n", Li*1E6, Ci*1E12);
  printf("       Li can be made from %3.1f turns on a %4.2f mm diameter air core\n", Li_turns, diameter_mm);

  % Design output Z match ----------------------------------------------

  Rs = real(Zo);  Rl = 50;
  [Xs Xp] = z_match(Rl,Rs);

  % Lets make XP an inductor so it can double as a RF choke, and Xp as
  % a capacitor will give us a convenient DC block

  w = 2*pi*150E6; diameter_mm = 6.25;
  Lo = Xp/w; Lo_turns = design_inductor(Lo*1E6, diameter_mm);
  Co = 1/(w*Xs);
  printf("Output: Zo = %3.1f + %3.1fj ohms\n", real(Zo), imag(Zo));
  printf("        matching network Xp = %3.1f X = %3.1f ohms\n", Xp, Xs);
  printf("        which is parallel Lo = %5.3f uH and series Co = %4.1f pF\n", Lo*1E6, Co*1E12);
  printf("        Lo can be made from %3.1f turns on a %4.2f mm diameter air core\n", Lo_turns, diameter_mm);
end