1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
% vq_binary_switch.m
% David Rowe Sep 2021
%
% Experiments in making VQs robust to bit errors, this is an Octave
% implementation of [1].
%
% [1] Pseudo Gray Coding, Zeger & Gersho 1990
1;
% returns indexes of hamming distance 1 neighbours
function index_neighbours = distance_one_neighbours(N,k)
log2N = log2(N);
index_neighbours = [];
for b=0:log2N-1
index_neighbour = bitxor(k-1,2.^b) + 1;
index_neighbours = [index_neighbours index_neighbour];
end
end
% equation (33) of [1], for hamming distance 1
function c = cost_of_distance_one(vq, prob, k, verbose=0)
[N K] = size(vq);
log2N = log2(N);
c = 0;
for b=0:log2N-1
index_neighbour = bitxor(k-1,2.^b) + 1;
diff = vq(k,:) - vq(index_neighbour, :);
dist = sum(diff*diff');
c += prob(k)*dist;
if verbose
printf("k: %d b: %d index_neighbour: %d dist: %f prob: %f c: %f \n", k, b, index_neighbour, dist, prob(k), c);
end
end
endfunction
% equation (39) of [1]
function d = distortion_of_current_mapping(vq, prob, verbose=0)
[N K] = size(vq);
d = 0;
for k=1:N
c = cost_of_distance_one(vq, prob, k);
d += c;
if verbose
printf("k: %2d c: %f d: %f\n", k, c, d);
end
end
endfunction
function [vq distortion] = binary_switching(vq, prob, max_iteration, fast_en=1)
[N K] = size(vq);
iteration = 0;
i = 1;
finished = 0;
switches = 0;
distortion0 = distortion_of_current_mapping(vq, prob)
while !finished
% generate a list A(i) of which vectors have the largest cost of bit errors
c = zeros(1,N);
for k=1:N
c(k) = cost_of_distance_one(vq, prob, k);
end
[tmp A] = sort(c,"descend");
% Try switching each vector with A(i)
best_delta = 0;
for j=2:N
% we can't switch with ourself
if j != A(i)
if fast_en
delta = -cost_of_distance_one(vq, prob, A(i)) - cost_of_distance_one(vq, prob, j);
n1 = [distance_one_neighbours(N,A(i)) distance_one_neighbours(N,j)];
n1(n1 == A(i)) = [];
n1(n1 == j) = [];
for l=1:length(n1)
delta -= cost_of_distance_one(vq, prob, n1(l));
end
else
distortion1 = distortion_of_current_mapping(vq, prob);
end
% switch vq entries A(i) and j
tmp = vq(A(i),:);
vq(A(i),:) = vq(j,:);
vq(j,:) = tmp;
if fast_en
delta += cost_of_distance_one(vq, prob, A(i)) + cost_of_distance_one(vq, prob, j);
for l=1:length(n1)
delta += cost_of_distance_one(vq, prob, n1(l));
end
else
distortion2 = distortion_of_current_mapping(vq, prob);
delta = distortion2 - distortion1;
end
if delta < 0
if abs(delta) > best_delta
best_delta = abs(delta);
best_j = j;
end
end
% unswitch
tmp = vq(A(i),:);
vq(A(i),:) = vq(j,:);
vq(j,:) = tmp;
end
end % next j
% printf("best_delta: %f best_j: %d\n", best_delta, best_j);
if best_delta == 0
% Hmm, no improvement, lets try the next vector in the sorted cost list
if i == N
finished = 1;
else
i++;
end
else
% OK keep the switch that minimised the distortion
tmp = vq(A(i),:);
vq(A(i),:) = vq(best_j,:);
vq(best_j,:) = tmp;
switches++;
% set up for next iteration
iteration++;
distortion = distortion_of_current_mapping(vq, prob);
printf("it: %3d dist: %f %3.2f i: %3d sw: %3d\n", iteration, distortion,
distortion/distortion0, i, switches);
if iteration >= max_iteration, finished = 1, end
i = 1;
end
end
endfunction
% return indexes of hamming distance one vectors
function ind = neighbour_indexes(vq, k)
[N K] = size(vq);
log2N = log2(N);
ind = [];
for b=0:log2N-1
index_neighbour = bitxor(k-1,2.^b) + 1;
ind = [ind index_neighbour];
end
endfunction
function test_binary_switch
vq1 = [1 1; -1 1; -1 -1; 1 -1];
%f=fopen("vq1.f32","wb"); fwrite(f, vq1, 'float32'); fclose(f);
[vq2 distortion] = binary_switching(vq1, ones(1,4), 10);
% algorithm should put hamming distance 1 neighbours in adjacent quadrants
distance_to_closest_neighbours = 2;
% there are two hamming distance 1 neighbours
target_distortion = 2^2*distance_to_closest_neighbours*length(vq1);
assert(target_distortion == distortion);
printf("test_binary_switch OK!\n");
endfunction
function test_fast
N=16; % Number of VQ codebook vectors
K=2; % Vector length
Ntrain=10000;
training_data = randn(Ntrain,K);
[idx vq1] = kmeans(training_data, N);
f=fopen("vq1.f32","wb");
for r=1:rows(vq1)
fwrite(f,vq1(r,:),"float32");
end
fclose(f);
[vq2 distortion] = binary_switching(vq1, [1 ones(1,N-1)], 1000, fast_en = 0);
[vq3 distortion] = binary_switching(vq1, [1 ones(1,N-1)], 1000, fast_en = 1);
assert(vq2 == vq3);
printf("test_fast OK!\n");
endfunction
function demo
N=16; % Number of VQ codebook vectors
K=2; % Vector length
Ntrain=10000;
training_data = randn(Ntrain,K);
[idx vq1] = kmeans(training_data, N);
[vq2 distortion] = binary_switching(vq1, [1 ones(1,N-1)], 1000, 1);
figure(1); clf; plot(training_data(:,1), training_data(:,2),'+');
hold on;
plot(vq1(:,1), vq1(:,2),'og','linewidth', 2);
plot(vq2(:,1), vq2(:,2),'or','linewidth', 2);
% plot hamming distance 1 neighbours
k = 1;
ind = neighbour_indexes(vq2, k);
for i=1:length(ind)
plot([vq2(k,1) vq2(ind(i),1)],[vq2(k,2) vq2(ind(i),2)],'r-','linewidth', 2);
end
hold off;
endfunction
pkg load statistics
%test_binary_switch;
test_fast;
%demo
|