aboutsummaryrefslogtreecommitdiff
path: root/src/fdmdv.c
blob: 7aeb4b8caa7f241438e50bc4dd807ecf2ab7c8a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
/*---------------------------------------------------------------------------*\

  FILE........: fdmdv.c
  AUTHOR......: David Rowe
  DATE CREATED: April 14 2012

  Functions that implement the FDMDV modem.

\*---------------------------------------------------------------------------*/

/*
  Copyright (C) 2012 David Rowe

  All rights reserved.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU Lesser General Public License version 2.1, as
  published by the Free Software Foundation.  This program is
  distributed in the hope that it will be useful, but WITHOUT ANY
  WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
  License for more details.

  You should have received a copy of the GNU Lesser General Public License
  along with this program; if not, see <http://www.gnu.org/licenses/>.
*/

/*---------------------------------------------------------------------------*\

                               INCLUDES

\*---------------------------------------------------------------------------*/

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include "fdmdv_internal.h"
#include "codec2_fdmdv.h"
#include "comp_prim.h"
#include "rn.h"
#include "rxdec_coeff.h"
#include "test_bits.h"
#include "pilot_coeff.h"
#include "codec2_fft.h"
#include "hanning.h"
#include "os.h"
#include "machdep.h"

#include "debug_alloc.h"

static int sync_uw[] = {1,-1,1,-1,1,-1};

static const COMP  pi_on_4 = { .70710678118654752439, .70710678118654752439 }; // cosf(PI/4) , sinf(PI/4)


/*--------------------------------------------------------------------------* \

  FUNCTION....: fdmdv_create
  AUTHOR......: David Rowe
  DATE CREATED: 16/4/2012

  Create and initialise an instance of the modem.  Returns a pointer
  to the modem states or NULL on failure.  One set of states is
  sufficient for a full duplex modem.

\*---------------------------------------------------------------------------*/

struct FDMDV * fdmdv_create(int Nc)
{
    struct FDMDV *f;
    int           c, i, k;

    assert(NC == FDMDV_NC_MAX);  /* check public and private #defines match */
    assert(Nc <= NC);
    assert(FDMDV_NOM_SAMPLES_PER_FRAME == M_FAC);
    assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M_FAC+M_FAC/P));

    f = (struct FDMDV*)MALLOC(sizeof(struct FDMDV));
    if (f == NULL)
	return NULL;

    f->Nc = Nc;

    f->ntest_bits = Nc*NB*4;
    f->current_test_bit = 0;
    f->rx_test_bits_mem = (int*)MALLOC(sizeof(int)*f->ntest_bits);
    assert(f->rx_test_bits_mem != NULL);
    for(i=0; i<f->ntest_bits; i++)
	f->rx_test_bits_mem[i] = 0;
    assert((sizeof(test_bits)/sizeof(int)) >= f->ntest_bits);

    f->old_qpsk_mapping = 0;

    f->tx_pilot_bit = 0;

    for(c=0; c<Nc+1; c++) {
	f->prev_tx_symbols[c].real = 1.0;
	f->prev_tx_symbols[c].imag = 0.0;
	f->prev_rx_symbols[c].real = 1.0;
	f->prev_rx_symbols[c].imag = 0.0;

	for(k=0; k<NSYM; k++) {
	    f->tx_filter_memory[c][k].real = 0.0;
	    f->tx_filter_memory[c][k].imag = 0.0;
	}

	/* Spread initial FDM carrier phase out as far as possible.
           This helped PAPR for a few dB.  We don't need to adjust rx
           phase as DQPSK takes care of that. */

	f->phase_tx[c].real = cosf(2.0*PI*c/(Nc+1));
 	f->phase_tx[c].imag = sinf(2.0*PI*c/(Nc+1));

	f->phase_rx[c].real = 1.0;
 	f->phase_rx[c].imag = 0.0;

	for(k=0; k<NT*P; k++) {
	    f->rx_filter_mem_timing[c][k].real = 0.0;
	    f->rx_filter_mem_timing[c][k].imag = 0.0;
	}
    }
    f->prev_tx_symbols[Nc].real = 2.0;

    fdmdv_set_fsep(f, FSEP);
    f->freq[Nc].real = cosf(2.0*PI*0.0/FS);
    f->freq[Nc].imag = sinf(2.0*PI*0.0/FS);
    f->freq_pol[Nc]  = 2.0*PI*0.0/FS;

    f->fbb_rect.real     = cosf(2.0*PI*FDMDV_FCENTRE/FS);
    f->fbb_rect.imag     = sinf(2.0*PI*FDMDV_FCENTRE/FS);
    f->fbb_pol           = 2.0*PI*FDMDV_FCENTRE/FS;
    f->fbb_phase_tx.real = 1.0;
    f->fbb_phase_tx.imag = 0.0;
    f->fbb_phase_rx.real = 1.0;
    f->fbb_phase_rx.imag = 0.0;

    /* Generate DBPSK pilot Look Up Table (LUT) */

    generate_pilot_lut(f->pilot_lut, &f->freq[Nc]);

    /* freq Offset estimation states */

    f->fft_pilot_cfg = codec2_fft_alloc (MPILOTFFT, 0, NULL, NULL);
    assert(f->fft_pilot_cfg != NULL);

    for(i=0; i<NPILOTBASEBAND; i++) {
	f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0;
	f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0;
    }
    f->pilot_lut_index = 0;
    f->prev_pilot_lut_index = 3*M_FAC;

    for(i=0; i<NRXDECMEM; i++) {
        f->rxdec_lpf_mem[i].real = 0.0;
        f->rxdec_lpf_mem[i].imag = 0.0;
    }

    for(i=0; i<NPILOTLPF; i++) {
	f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0;
	f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0;
    }

    f->foff = 0.0;
    f->foff_phase_rect.real = 1.0;
    f->foff_phase_rect.imag = 0.0;

    for(i=0; i<NRX_FDM_MEM; i++) {
        f->rx_fdm_mem[i].real = 0.0;
        f->rx_fdm_mem[i].imag = 0.0;
    }

    f->fest_state = 0;
    f->sync = 0;
    f->timer = 0;
    for(i=0; i<NSYNC_MEM; i++)
        f->sync_mem[i] = 0;

    for(c=0; c<Nc+1; c++) {
	f->sig_est[c] = 0.0;
	f->noise_est[c] = 0.0;
    }

    f->sig_pwr_av = 0.0;
    f->foff_filt = 0.0;

    return f;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_destroy
  AUTHOR......: David Rowe
  DATE CREATED: 16/4/2012

  Destroy an instance of the modem.

\*---------------------------------------------------------------------------*/

void fdmdv_destroy(struct FDMDV *fdmdv)
{
    assert(fdmdv != NULL);
    codec2_fft_free(fdmdv->fft_pilot_cfg);
    FREE(fdmdv->rx_test_bits_mem);
    FREE(fdmdv);
}


void fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv) {
    fdmdv->old_qpsk_mapping = 1;
}


int fdmdv_bits_per_frame(struct FDMDV *fdmdv)
{
    return (fdmdv->Nc * NB);
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_get_test_bits()
  AUTHOR......: David Rowe
  DATE CREATED: 16/4/2012

  Generate a frame of bits from a repeating sequence of random data.  OK so
  it's not very random if it repeats but it makes syncing at the demod easier
  for test purposes.

\*---------------------------------------------------------------------------*/

void fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[])
{
    int i;
    int bits_per_frame = fdmdv_bits_per_frame(f);

    for(i=0; i<bits_per_frame; i++) {
	tx_bits[i] = test_bits[f->current_test_bit];
	f->current_test_bit++;
	if (f->current_test_bit > (f->ntest_bits-1))
	    f->current_test_bit = 0;
    }
}

float fdmdv_get_fsep(struct FDMDV *f)
{
    return f->fsep;
}

void fdmdv_set_fsep(struct FDMDV *f, float fsep) {
    int   c;
    float carrier_freq;

    f->fsep = fsep;

    /* Set up frequency of each carrier */

    for(c=0; c<f->Nc/2; c++) {
	carrier_freq = (-f->Nc/2 + c)*f->fsep;
	f->freq[c].real = cosf(2.0*PI*carrier_freq/FS);
 	f->freq[c].imag = sinf(2.0*PI*carrier_freq/FS);
 	f->freq_pol[c]  = 2.0*PI*carrier_freq/FS;
    }

    for(c=f->Nc/2; c<f->Nc; c++) {
	carrier_freq = (-f->Nc/2 + c + 1)*f->fsep;
	f->freq[c].real = cosf(2.0*PI*carrier_freq/FS);
 	f->freq[c].imag = sinf(2.0*PI*carrier_freq/FS);
 	f->freq_pol[c]  = 2.0*PI*carrier_freq/FS;
    }
}


/*---------------------------------------------------------------------------*\

  FUNCTION....: bits_to_dqpsk_symbols()
  AUTHOR......: David Rowe
  DATE CREATED: 16/4/2012

  Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from
  vector of (1,Nc*Nb) input tx_bits.  The Nc+1 symbol is the +1 -1 +1
  .... BPSK sync carrier.

\*---------------------------------------------------------------------------*/

void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping)
{
    int c, msb, lsb;
    COMP j = {0.0,1.0};

    /* Map tx_bits to to Nc DQPSK symbols.  Note legacy support for
       old (suboptimal) V0.91 FreeDV mapping */

    for(c=0; c<Nc; c++) {
	msb = tx_bits[2*c];
	lsb = tx_bits[2*c+1];
	if ((msb == 0) && (lsb == 0))
	    tx_symbols[c] = prev_tx_symbols[c];
	if ((msb == 0) && (lsb == 1))
            tx_symbols[c] = cmult(j, prev_tx_symbols[c]);
	if ((msb == 1) && (lsb == 0)) {
	    if (old_qpsk_mapping)
                tx_symbols[c] = cneg(prev_tx_symbols[c]);
            else
                tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
        }
	if ((msb == 1) && (lsb == 1)) {
	    if (old_qpsk_mapping)
                tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
            else
                tx_symbols[c] = cneg(prev_tx_symbols[c]);
        }
    }

    /* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly)
       two spectral lines at +/- Rs/2 */

    if (*pilot_bit)
	tx_symbols[Nc] = cneg(prev_tx_symbols[Nc]);
    else
	tx_symbols[Nc] = prev_tx_symbols[Nc];

    if (*pilot_bit)
	*pilot_bit = 0;
    else
	*pilot_bit = 1;
}


/*---------------------------------------------------------------------------*\

  FUNCTION....: tx_filter()
  AUTHOR......: David Rowe
  DATE CREATED: 17/4/2012

  Given Nc*NB bits construct M_FAC samples (1 symbol) of Nc+1 filtered
  symbols streams.

\*---------------------------------------------------------------------------*/

void tx_filter(COMP tx_baseband[NC+1][M_FAC], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM])
{
    int     c;
    int     i,j,k;
    float   acc;
    COMP    gain;

    gain.real = sqrtf(2.0)/2.0;
    gain.imag = 0.0;

    for(c=0; c<Nc+1; c++)
	tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);

    /*
       tx filter each symbol, generate M_FAC filtered output samples for each symbol.
       Efficient polyphase filter techniques used as tx_filter_memory is sparse
    */

    for(i=0; i<M_FAC; i++) {
	for(c=0; c<Nc+1; c++) {

	    /* filter real sample of symbol for carrier c */

	    acc = 0.0;
	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
		acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
	    tx_baseband[c][i].real = acc;

	    /* filter imag sample of symbol for carrier c */

	    acc = 0.0;
	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
		acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
	    tx_baseband[c][i].imag = acc;

	}
    }

    /* shift memory, inserting zeros at end */

    for(i=0; i<NSYM-1; i++)
	for(c=0; c<Nc+1; c++)
	    tx_filter_memory[c][i] = tx_filter_memory[c][i+1];

    for(c=0; c<Nc+1; c++) {
	tx_filter_memory[c][NSYM-1].real = 0.0;
	tx_filter_memory[c][NSYM-1].imag = 0.0;
    }
}


/*---------------------------------------------------------------------------*\

  FUNCTION....: tx_filter_and_upconvert()
  AUTHOR......: David Rowe
  DATE CREATED: 13 August 2014

  Given Nc symbols construct M_FAC samples (1 symbol) of Nc+1 filtered
  and upconverted symbols.

\*---------------------------------------------------------------------------*/

void tx_filter_and_upconvert(COMP tx_fdm[], int Nc, COMP tx_symbols[],
                             COMP tx_filter_memory[NC+1][NSYM],
                             COMP phase_tx[], COMP freq[],
                             COMP *fbb_phase, COMP fbb_rect)
{
    int     c;
    int     i,j,k;
    float   acc;
    COMP    gain;
    COMP    tx_baseband;
    COMP  two = {2.0, 0.0};
    float mag;

    gain.real = sqrtf(2.0)/2.0;
    gain.imag = 0.0;

    for(i=0; i<M_FAC; i++) {
	tx_fdm[i].real = 0.0;
	tx_fdm[i].imag = 0.0;
    }

    for(c=0; c<Nc+1; c++)
	tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);

    /*
       tx filter each symbol, generate M_FAC filtered output samples for
       each symbol, which we then freq shift and sum with other
       carriers.  Efficient polyphase filter techniques used as
       tx_filter_memory is sparse
    */

    for(c=0; c<Nc+1; c++) {
        for(i=0; i<M_FAC; i++) {

	    /* filter real sample of symbol for carrier c */

	    acc = 0.0;
	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
		acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
	    tx_baseband.real = acc;

	    /* filter imag sample of symbol for carrier c */

	    acc = 0.0;
	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
		acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
	    tx_baseband.imag = acc;

            /* freq shift and sum */

	    phase_tx[c] = cmult(phase_tx[c], freq[c]);
	    tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c]));
	}
    }

    /* shift whole thing up to carrier freq */

    for (i=0; i<M_FAC; i++) {
	*fbb_phase = cmult(*fbb_phase, fbb_rect);
	tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
    }

    /*
      Scale such that total Carrier power C of real(tx_fdm) = Nc.  This
      excludes the power of the pilot tone.
      We return the complex (single sided) signal to make frequency
      shifting for the purpose of testing easier
    */

    for (i=0; i<M_FAC; i++)
	tx_fdm[i] = cmult(two, tx_fdm[i]);

    /* normalise digital oscillators as the magnitude can drift over time */

    for (c=0; c<Nc+1; c++) {
        mag = cabsolute(phase_tx[c]);
	phase_tx[c].real /= mag;
	phase_tx[c].imag /= mag;
    }

    mag = cabsolute(*fbb_phase);
    fbb_phase->real /= mag;
    fbb_phase->imag /= mag;

    /* shift memory, inserting zeros at end */

    for(i=0; i<NSYM-1; i++)
	for(c=0; c<Nc+1; c++)
	    tx_filter_memory[c][i] = tx_filter_memory[c][i+1];

    for(c=0; c<Nc+1; c++) {
	tx_filter_memory[c][NSYM-1].real = 0.0;
	tx_filter_memory[c][NSYM-1].imag = 0.0;
    }
}


/*---------------------------------------------------------------------------*\

  FUNCTION....: fdm_upconvert()
  AUTHOR......: David Rowe
  DATE CREATED: 17/4/2012

  Construct FDM signal by frequency shifting each filtered symbol
  stream.  Returns complex signal so we can apply frequency offsets
  easily.

\*---------------------------------------------------------------------------*/

void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M_FAC], COMP phase_tx[], COMP freq[],
                   COMP *fbb_phase, COMP fbb_rect)
{
    int   i,c;
    COMP  two = {2.0, 0.0};
    float mag;

    for(i=0; i<M_FAC; i++) {
	tx_fdm[i].real = 0.0;
	tx_fdm[i].imag = 0.0;
    }

    for (c=0; c<=Nc; c++)
	for (i=0; i<M_FAC; i++) {
	    phase_tx[c] = cmult(phase_tx[c], freq[c]);
	    tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
	}

    /* shift whole thing up to carrier freq */

    for (i=0; i<M_FAC; i++) {
	*fbb_phase = cmult(*fbb_phase, fbb_rect);
	tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
    }

    /*
      Scale such that total Carrier power C of real(tx_fdm) = Nc.  This
      excludes the power of the pilot tone.
      We return the complex (single sided) signal to make frequency
      shifting for the purpose of testing easier
    */

    for (i=0; i<M_FAC; i++)
	tx_fdm[i] = cmult(two, tx_fdm[i]);

    /* normalise digital oscilators as the magnitude can drift over time */

    for (c=0; c<Nc+1; c++) {
        mag = cabsolute(phase_tx[c]);
	phase_tx[c].real /= mag;
	phase_tx[c].imag /= mag;
    }

    mag = cabsolute(*fbb_phase);
    fbb_phase->real /= mag;
    fbb_phase->imag /= mag;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_mod()
  AUTHOR......: David Rowe
  DATE CREATED: 26/4/2012

  FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and
  generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols.
  Sync bit is returned to aid alignment of your next frame.

  The sync_bit value returned will be used for the _next_ frame.

  The output signal is complex to support single sided frequency
  shifting, for example when testing frequency offsets in channel
  simulation.

\*---------------------------------------------------------------------------*/

void fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[], int tx_bits[], int *sync_bit)
{
    COMP          tx_symbols[NC+1];
    PROFILE_VAR(mod_start, tx_filter_and_upconvert_start);

    PROFILE_SAMPLE(mod_start);
    bits_to_dqpsk_symbols(tx_symbols, fdmdv->Nc, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, fdmdv->old_qpsk_mapping);
    memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
    PROFILE_SAMPLE_AND_LOG(tx_filter_and_upconvert_start, mod_start, "    bits_to_dqpsk_symbols");
    tx_filter_and_upconvert(tx_fdm, fdmdv->Nc, tx_symbols, fdmdv->tx_filter_memory,
                            fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
    PROFILE_SAMPLE_AND_LOG2(tx_filter_and_upconvert_start, "    tx_filter_and_upconvert");

    *sync_bit = fdmdv->tx_pilot_bit;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: generate_pilot_fdm()
  AUTHOR......: David Rowe
  DATE CREATED: 19/4/2012

  Generate M_FAC samples of DBPSK pilot signal for Freq offset estimation.

\*---------------------------------------------------------------------------*/

void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol,
			float *filter_mem, COMP *phase, COMP *freq)
{
    int   i,j,k;
    float tx_baseband[M_FAC];

    /* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly)
       two spectral lines at +/- RS/2 */

    if (*bit)
	*symbol = -*symbol;

    if (*bit)
	*bit = 0;
    else
	*bit = 1;

    /* filter DPSK symbol to create M_FAC baseband samples */

    filter_mem[NFILTER-1] = (sqrtf(2)/2) * *symbol;
    for(i=0; i<M_FAC; i++) {
	tx_baseband[i] = 0.0;
	for(j=M_FAC-1,k=M_FAC-i-1; j<NFILTER; j+=M_FAC,k+=M_FAC)
	    tx_baseband[i] += M_FAC * filter_mem[j] * gt_alpha5_root[k];
    }

    /* shift memory, inserting zeros at end */

    for(i=0; i<NFILTER-M_FAC; i++)
	filter_mem[i] = filter_mem[i+M_FAC];

    for(i=NFILTER-M_FAC; i<NFILTER; i++)
	filter_mem[i] = 0.0;

    /* upconvert */

    for(i=0; i<M_FAC; i++) {
	*phase = cmult(*phase, *freq);
	pilot_fdm[i].real = sqrtf(2)*2*tx_baseband[i] * phase->real;
	pilot_fdm[i].imag = sqrtf(2)*2*tx_baseband[i] * phase->imag;
    }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: generate_pilot_lut()
  AUTHOR......: David Rowe
  DATE CREATED: 19/4/2012

  Generate a 4M sample vector of DBPSK pilot signal.  As the pilot signal
  is periodic in 4M samples we can then use this vector as a look up table
  for pilot signal generation in the demod.

\*---------------------------------------------------------------------------*/

void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq)
{
    int   pilot_rx_bit = 0;
    float pilot_symbol = sqrtf(2.0);
    COMP  pilot_phase  = {1.0, 0.0};
    float pilot_filter_mem[NFILTER];
    COMP  pilot[M_FAC];
    int   i,f;

    for(i=0; i<NFILTER; i++)
	pilot_filter_mem[i] = 0.0;

    /* discard first 4 symbols as filter memory is filling, just keep
       last four symbols */

    for(f=0; f<8; f++) {
	generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq);
	if (f >= 4)
	    memcpy(&pilot_lut[M_FAC*(f-4)], pilot, M_FAC*sizeof(COMP));
    }

    // create complex conjugate since we need this and only this later on
    for (f=0;f<4*M_FAC;f++)
    {
        pilot_lut[f] = cconj(pilot_lut[f]);
    }

}

/*---------------------------------------------------------------------------*\

  FUNCTION....: lpf_peak_pick()
  AUTHOR......: David Rowe
  DATE CREATED: 20/4/2012

  LPF and peak pick part of freq est, put in a function as we call it twice.

\*---------------------------------------------------------------------------*/

void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[],
		   COMP pilot_lpf[], codec2_fft_cfg fft_pilot_cfg, COMP S[], int nin,
                   int do_fft)
{
    int   i,j,k;
    int   mpilot;
    float mag, imax;
    int   ix;
    float r;

    /* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */

    for(i=0; i<NPILOTLPF-nin; i++)
        pilot_lpf[i] = pilot_lpf[nin+i];
    for(i=NPILOTLPF-nin, j=NPILOTBASEBAND-nin; i<NPILOTLPF; i++,j++) {
        pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0;

        // STM32F4 hand optimized, this alone makes it go done from 1.6 to 1.17ms
        // switching pilot_coeff to RAM (by removing const in pilot_coeff.h) would save
        // another 0.11 ms at the expense of NPILOTCOEFF * 4 bytes == 120 bytes RAM

        if (NPILOTCOEFF%5 == 0)
        {
            for(k=0; k<NPILOTCOEFF; k+=5)
            {
                COMP i0 = fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]);
                COMP i1 = fcmult(pilot_coeff[k+1], pilot_baseband[j-NPILOTCOEFF+1+k+1]);
                COMP i2 = fcmult(pilot_coeff[k+2], pilot_baseband[j-NPILOTCOEFF+1+k+2]);
                COMP i3 = fcmult(pilot_coeff[k+3], pilot_baseband[j-NPILOTCOEFF+1+k+3]);
                COMP i4 = fcmult(pilot_coeff[k+4], pilot_baseband[j-NPILOTCOEFF+1+k+4]);

                pilot_lpf[i] = cadd(cadd(cadd(cadd(cadd(pilot_lpf[i], i0),i1),i2),i3),i4);
            }
        }
        else
        {
            for(k=0; k<NPILOTCOEFF; k++)
            {
                pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]));
            }

        }
    }

    /* We only need to do FFTs if we are out of sync.  Making them optional saves CPU in sync, which is when
       we need to run the codec */

    imax = 0.0;
    *foff = 0.0;
    for(i=0; i<MPILOTFFT; i++) {
        S[i].real = 0.0;
        S[i].imag = 0.0;
    }

    if (do_fft) {

        /* decimate to improve DFT resolution, window and DFT */
        mpilot = FS/(2*200);  /* calc decimation rate given new sample rate is twice LPF freq */
        for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) {
            S[j] = fcmult(hanning[i], pilot_lpf[i]);
        }

        codec2_fft_inplace(fft_pilot_cfg, S);

        /* peak pick and convert to Hz */

        imax = 0.0;
        ix = 0;
        for(i=0; i<MPILOTFFT; i++) {
            mag = S[i].real*S[i].real + S[i].imag*S[i].imag;
            if (mag > imax) {
                imax = mag;
                ix = i;
            }
        }
        r = 2.0*200.0/MPILOTFFT;     /* maps FFT bin to frequency in Hz */

        if (ix >= MPILOTFFT/2)
            *foff = (ix - MPILOTFFT)*r;
        else
            *foff = (ix)*r;
    }

    *max = imax;

}

/*---------------------------------------------------------------------------*\

  FUNCTION....: rx_est_freq_offset()
  AUTHOR......: David Rowe
  DATE CREATED: 19/4/2012

  Estimate frequency offset of FDM signal using BPSK pilot.  Note that
  this algorithm is quite sensitive to pilot tone level wrt other
  carriers, so test variations to the pilot amplitude carefully.

\*---------------------------------------------------------------------------*/

float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin, int do_fft)
{
    int  i;
#ifndef FDV_ARM_MATH
    int j;
#endif
    COMP pilot[M_FAC+M_FAC/P];
    COMP prev_pilot[M_FAC+M_FAC/P];
    float foff, foff1, foff2;
    float   max1, max2;

    assert(nin <= M_FAC+M_FAC/P);

    /* get pilot samples used for correlation/down conversion of rx signal */

    for (i=0; i<nin; i++) {
	pilot[i] = f->pilot_lut[f->pilot_lut_index];
	f->pilot_lut_index++;
	if (f->pilot_lut_index >= 4*M_FAC)
	    f->pilot_lut_index = 0;

	prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index];
	f->prev_pilot_lut_index++;
	if (f->prev_pilot_lut_index >= 4*M_FAC)
	    f->prev_pilot_lut_index = 0;
    }

    /*
      Down convert latest M_FAC samples of pilot by multiplying by ideal
      BPSK pilot signal we have generated locally.  The peak of the
      resulting signal is sensitive to the time shift between the
      received and local version of the pilot, so we do it twice at
      different time shifts and choose the maximum.
    */

    for(i=0; i<NPILOTBASEBAND-nin; i++) {
	f->pilot_baseband1[i] = f->pilot_baseband1[i+nin];
	f->pilot_baseband2[i] = f->pilot_baseband2[i+nin];
    }

#ifndef FDV_ARM_MATH
    for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) {
       	f->pilot_baseband1[j] = cmult(rx_fdm[i], pilot[i]);
	f->pilot_baseband2[j] = cmult(rx_fdm[i], prev_pilot[i]);
    }
#else
    // TODO: Maybe a handwritten mult taking advantage of rx_fdm[0] being
    // used twice would be faster but this is for sure faster than
    // the implementation above in any case.
    arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&pilot[0].real,&f->pilot_baseband1[NPILOTBASEBAND-nin].real,nin);
    arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&prev_pilot[0].real,&f->pilot_baseband2[NPILOTBASEBAND-nin].real,nin);
#endif

    lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin, do_fft);
    lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin, do_fft);

    if (max1 > max2)
	foff = foff1;
    else
	foff = foff2;

    return foff;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_freq_shift()
  AUTHOR......: David Rowe
  DATE CREATED: 26/4/2012

  Frequency shift modem signal.  The use of complex input and output allows
  single sided frequency shifting (no images).

\*---------------------------------------------------------------------------*/

void fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff,
                      COMP *foff_phase_rect, int nin)
{
    COMP  foff_rect;
    float mag;
    int   i;

    foff_rect.real = cosf(2.0*PI*foff/FS);
    foff_rect.imag = sinf(2.0*PI*foff/FS);
    for(i=0; i<nin; i++) {
	*foff_phase_rect = cmult(*foff_phase_rect, foff_rect);
	rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
    }

    /* normalise digital oscillator as the magnitude can drift over time */

    mag = cabsolute(*foff_phase_rect);
    foff_phase_rect->real /= mag;
    foff_phase_rect->imag /= mag;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdm_downconvert
  AUTHOR......: David Rowe
  DATE CREATED: 22/4/2012

  Frequency shift each modem carrier down to Nc+1 baseband signals.

\*---------------------------------------------------------------------------*/

void fdm_downconvert(COMP rx_baseband[NC+1][M_FAC+M_FAC/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
{
    int   i,c;
    float mag;

    /* maximum number of input samples to demod */

    assert(nin <= (M_FAC+M_FAC/P));

    /* downconvert */

    for (c=0; c<Nc+1; c++)
	for (i=0; i<nin; i++) {
	    phase_rx[c] = cmult(phase_rx[c], freq[c]);
	    rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
	}

    /* normalise digital oscilators as the magnitude can drift over time */

    for (c=0; c<Nc+1; c++) {
        mag = cabsolute(phase_rx[c]);
	phase_rx[c].real /= mag;
	phase_rx[c].imag /= mag;
    }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: rx_filter()
  AUTHOR......: David Rowe
  DATE CREATED: 22/4/2012

  Receive filter each baseband signal at oversample rate P.  Filtering at
  rate P lowers CPU compared to rate M_FAC.

  Depending on the number of input samples to the demod nin, we
  produce P-1, P (usually), or P+1 filtered samples at rate P.  nin is
  occasionally adjusted to compensate for timing slips due to
  different tx and rx sample clocks.

\*---------------------------------------------------------------------------*/

void rx_filter(COMP rx_filt[][P+1], int Nc, COMP rx_baseband[][M_FAC+M_FAC/P], COMP rx_filter_memory[][NFILTER], int nin)
{
    int c, i,j,k,l;
    int n=M_FAC/P;

    /* rx filter each symbol, generate P filtered output samples for
       each symbol.  Note we keep filter memory at rate M_FAC, it's just
       the filter output at rate P */

    for(i=0, j=0; i<nin; i+=n,j++) {

	/* latest input sample */

	for(c=0; c<Nc+1; c++)
	    for(k=NFILTER-n,l=i; k<NFILTER; k++,l++)
		rx_filter_memory[c][k] = rx_baseband[c][l];

	/* convolution (filtering) */

	for(c=0; c<Nc+1; c++) {
	    rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0;
	    for(k=0; k<NFILTER; k++)
		rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k]));
	}

	/* make room for next input sample */

	for(c=0; c<Nc+1; c++)
	    for(k=0,l=n; k<NFILTER-n; k++,l++)
		rx_filter_memory[c][k] = rx_filter_memory[c][l];
    }

    assert(j <= (P+1)); /* check for any over runs */
}


/*---------------------------------------------------------------------------*\

  FUNCTION....: rxdec_filter()
  AUTHOR......: David Rowe
  DATE CREATED: 31 July 2014

  +/- 1000Hz low pass filter, allows us to filter at rate Q to save CPU load.

\*---------------------------------------------------------------------------*/

void rxdec_filter(COMP rx_fdm_filter[], COMP rx_fdm[], COMP rxdec_lpf_mem[], int nin) {
    int i,j,k,st;

    for(i=0; i<NRXDECMEM-nin; i++)
        rxdec_lpf_mem[i] = rxdec_lpf_mem[i+nin];
    for(i=0, j=NRXDECMEM-nin; i<nin; i++,j++)
        rxdec_lpf_mem[j] = rx_fdm[i];

    st = NRXDECMEM - nin - NRXDEC + 1;
    for(i=0; i<nin; i++) {
        rx_fdm_filter[i].real = 0.0;
        for(k=0; k<NRXDEC; k++)
            rx_fdm_filter[i].real += rxdec_lpf_mem[st+i+k].real * rxdec_coeff[k];
        rx_fdm_filter[i].imag = 0.0;
        for(k=0; k<NRXDEC; k++)
            rx_fdm_filter[i].imag += rxdec_lpf_mem[st+i+k].imag * rxdec_coeff[k];
    }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fir_filter2()
  AUTHOR......: Danilo Beuche
  DATE CREATED: August 2016

  This version submitted by Danilo for the STM32F4 platform.  The idea
  is to avoid reading the same value from the STM32F4 "slow" flash
  twice. 2-4ms of savings per frame were measured by Danilo and the mcHF
  team.

\*---------------------------------------------------------------------------*/

static void fir_filter2(float acc[], float mem[], const float coeff[], const unsigned int dec_rate) {
    acc[0] = 0.0;
    acc[1] = 0.0;

    float c1,c2,c3,c4,c5,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,a1,a2;
    float* inpCmplx = &mem[0];
    const float* coeffPtr = &coeff[0];

    int m;

    // this manual loop unrolling gives significant boost on STM32 machines
    // reduction from avg 3.2ms to 2.4ms in tfdmv.c test
    // 5 was the sweet spot, with 6 it took longer again
    // and should not harm other, more powerful machines
    // no significant difference in output, only rounding (which was to be expected)
    // TODO: try to move coeffs to RAM and check if it makes a significant difference
    if (NFILTER%(dec_rate*5) == 0) {
        for(m=0; m<NFILTER; m+=dec_rate*5) {
            c1 = *coeffPtr;

            m1 = inpCmplx[0];
            m2 = inpCmplx[1];

            inpCmplx+= dec_rate*2;
            coeffPtr+= dec_rate;

            c2 = *coeffPtr;
            m3 = inpCmplx[0];
            m4 = inpCmplx[1];

            inpCmplx+= dec_rate*2;
            coeffPtr+= dec_rate;

            c3 = *coeffPtr;
            m5 = inpCmplx[0];
            m6 = inpCmplx[1];

            inpCmplx+= dec_rate*2;
            coeffPtr+= dec_rate;

            c4 = *coeffPtr;
            m7 = inpCmplx[0];
            m8 = inpCmplx[1];

            inpCmplx+= dec_rate*2;
            coeffPtr+= dec_rate;

            c5 = *coeffPtr;
            m9 = inpCmplx[0];
            m10 = inpCmplx[1];

            inpCmplx+= dec_rate*2;
            coeffPtr+= dec_rate;

            a1 = c1 * m1 + c2 * m3 + c3 * m5 + c4 * m7 + c5 * m9;
            a2 = c1 * m2 + c2 * m4 + c3 * m6 + c4 * m8 + c5 * m10;
            acc[0] += a1;
            acc[1] += a2;
        }
    }
    else
    {
        for(m=0; m<NFILTER; m+=dec_rate) {
            c1 = *coeffPtr;

            m1 = inpCmplx[0];
            m2 = inpCmplx[1];

            inpCmplx+= dec_rate*2;
            coeffPtr+= dec_rate;

            a1 = c1 * m1;
            a2 = c1 * m2;
            acc[0] += a1;
            acc[1] += a2;
        }
    }
    acc[0] *= dec_rate;
    acc[1] *= dec_rate;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: down_convert_and_rx_filter()
  AUTHOR......: David Rowe
  DATE CREATED: 30/6/2014

  Combined down convert and rx filter, more memory efficient but less
  intuitive design.

  Depending on the number of input samples to the demod nin, we
  produce P-1, P (usually), or P+1 filtered samples at rate P.  nin is
  occasionally adjusted to compensate for timing slips due to
  different tx and rx sample clocks.

\*---------------------------------------------------------------------------*/

/*
   TODO: [ ] windback phase calculated once at init time
*/

void down_convert_and_rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_fdm[],
                                COMP rx_fdm_mem[], COMP phase_rx[], COMP freq[],
                                float freq_pol[], int nin, int dec_rate)
{
    int i,k,c,st,Nval;
    float windback_phase, mag;
    COMP  windback_phase_rect;
    COMP  rx_baseband[NRX_FDM_MEM];
    COMP  f_rect;

    //PROFILE_VAR(windback_start,  downconvert_start, filter_start);

    /* update memory of rx_fdm */

#if 0
    for(i=0; i<NRX_FDM_MEM-nin; i++)
        rx_fdm_mem[i] = rx_fdm_mem[i+nin];
    for(i=NFILTER+M_FAC-nin, k=0; i<NFILTER+M_FAC; i++, k++)
        rx_fdm_mem[i] = rx_fdm[k];
#else
    // this gives only 40uS gain on STM32 but now that we have, we keep it
    memmove(&rx_fdm_mem[0],&rx_fdm_mem[nin],(NRX_FDM_MEM-nin)*sizeof(COMP));
    memcpy(&rx_fdm_mem[NRX_FDM_MEM-nin],&rx_fdm[0],nin*sizeof(COMP));
#endif
    for(c=0; c<Nc+1; c++) {

      /*

        So we have rx_fdm_mem, a baseband array of samples at
        rate Fs Hz, including the last nin samples at the end.  To
        filter each symbol we require the baseband samples for all Nsym
        symbols that we filter over.  So we need to downconvert the
        entire rx_fdm_mem array.  To downconvert these we need the LO
        phase referenced to the start of the rx_fdm_mem array.


        <--------------- Nrx_filt_mem ------->
        nin
        |--------------------------|---------|
        1                          |
        phase_rx(c)

        This means winding phase(c) back from this point
        to ensure phase continuity.

      */

        //PROFILE_SAMPLE(windback_start);
        windback_phase           = -freq_pol[c]*NFILTER;
        windback_phase_rect.real = cosf(windback_phase);
        windback_phase_rect.imag = sinf(windback_phase);
        phase_rx[c]              = cmult(phase_rx[c],windback_phase_rect);
        //PROFILE_SAMPLE_AND_LOG(downconvert_start, windback_start, "        windback");

        /* down convert all samples in buffer */

        st  = NRX_FDM_MEM-1;  /* end of buffer                  */
        st -= nin-1;          /* first new sample               */
        st -= NFILTER;        /* first sample used in filtering */

        /* freq shift per dec_rate step is dec_rate times original shift */

        f_rect = freq[c];
        for(i=0; i<dec_rate-1; i++)
            f_rect = cmult(f_rect,freq[c]);

        for(i=st; i<NRX_FDM_MEM; i+=dec_rate) {
            phase_rx[c]    = cmult(phase_rx[c], f_rect);
            rx_baseband[i] = cmult(rx_fdm_mem[i],cconj(phase_rx[c]));
        }
        //PROFILE_SAMPLE_AND_LOG(filter_start, downconvert_start, "        downconvert");

        /* now we can filter this carrier's P symbols */

        Nval=M_FAC/P;
        for(i=0, k=0; i<nin; i+=Nval, k++) {
#ifdef ORIG
            rx_filt[c][k].real = 0.0; rx_filt[c][k].imag = 0.0;

            for(m=0; m<NFILTER; m++)
                rx_filt[c][k] = cadd(rx_filt[c][k], fcmult(gt_alpha5_root[m], rx_baseband[st+i+m]));
#else
            // rx_filt[c][k].real = fir_filter(&rx_baseband[st+i].real, (float*)gt_alpha5_root, dec_rate);
            // rx_filt[c][k].imag = fir_filter(&rx_baseband[st+i].imag, (float*)gt_alpha5_root, dec_rate);
            fir_filter2(&rx_filt[c][k].real,&rx_baseband[st+i].real, gt_alpha5_root, dec_rate);
#endif
        }
        //PROFILE_SAMPLE_AND_LOG2(filter_start, "        filter");

        /* normalise digital oscilators as the magnitude can drift over time */

        mag = cabsolute(phase_rx[c]);
	phase_rx[c].real /= mag;
	phase_rx[c].imag /= mag;

       //printf("phase_rx[%d] = %f %f\n", c, phase_rx[c].real, phase_rx[c].imag);
    }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: rx_est_timing()
  AUTHOR......: David Rowe
  DATE CREATED: 23/4/2012

  Estimate optimum timing offset, re-filter receive symbols at optimum
  timing estimate.

\*---------------------------------------------------------------------------*/

float rx_est_timing(COMP rx_symbols[],
                    int  Nc,
		    COMP rx_filt[][P+1],
		    COMP rx_filter_mem_timing[][NT*P],
		    float env[],
		    int nin,
                    int m)
{
    int   c,i,j;
    int   adjust;
    COMP  x, phase, freq;
    float rx_timing, fract, norm_rx_timing;
    int   low_sample, high_sample;

    /*
      nin  adjust
      --------------------------------
      120  -1 (one less rate P sample)
      160   0 (nominal)
      200   1 (one more rate P sample)
    */

    adjust = P - nin*P/m;

    /* update buffer of NT rate P filtered symbols */

    for(c=0; c<Nc+1; c++)
	for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++)
	    rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j];
    for(c=0; c<Nc+1; c++)
	for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++)
	    rx_filter_mem_timing[c][i] = rx_filt[c][j];

    /* sum envelopes of all carriers */

    for(i=0; i<NT*P; i++) {
	env[i] = 0.0;
	for(c=0; c<Nc+1; c++)
	    env[i] += cabsolute(rx_filter_mem_timing[c][i]);
    }

    /* The envelope has a frequency component at the symbol rate.  The
       phase of this frequency component indicates the timing.  So work
       out single DFT at frequency 2*pi/P */

    x.real = 0.0; x.imag = 0.0;
    freq.real = cosf(2*PI/P);
    freq.imag = sinf(2*PI/P);
    phase.real = 1.0;
    phase.imag = 0.0;

    for(i=0; i<NT*P; i++) {
	x = cadd(x, fcmult(env[i], phase));
	phase = cmult(phase, freq);
    }

    /* Map phase to estimated optimum timing instant at rate P.  The
       P/4 part was adjusted by experiment, I know not why.... */

    norm_rx_timing = atan2f(x.imag, x.real)/(2*PI);
    assert(fabsf(norm_rx_timing) < 1.0);
    rx_timing      = norm_rx_timing*P + P/4;

    if (rx_timing > P)
	rx_timing -= P;
    if (rx_timing < -P)
	rx_timing += P;

    /* rx_filter_mem_timing contains Nt*P samples (Nt symbols at rate
       P), where Nt is odd.  Lets use linear interpolation to resample
       in the centre of the timing estimation window .*/

    rx_timing  += floorf(NT/2.0)*P;
    low_sample = floorf(rx_timing);
    fract = rx_timing - low_sample;
    high_sample = ceilf(rx_timing);

    //printf("rx_timing: %f low_sample: %d high_sample: %d fract: %f\n", rx_timing, low_sample, high_sample, fract);

    for(c=0; c<Nc+1; c++) {
        rx_symbols[c] = cadd(fcmult(1.0-fract, rx_filter_mem_timing[c][low_sample-1]), fcmult(fract, rx_filter_mem_timing[c][high_sample-1]));
        //rx_symbols[c] = rx_filter_mem_timing[c][high_sample];
    }

    /* This value will be +/- half a symbol so will wrap around at +/-
       M/2 or +/- 80 samples with M=160 */

    return norm_rx_timing*m;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: qpsk_to_bits()
  AUTHOR......: David Rowe
  DATE CREATED: 24/4/2012

  Convert DQPSK symbols back to an array of bits, extracts sync bit
  from DBPSK pilot, and also uses pilot to estimate fine frequency
  error.

\*---------------------------------------------------------------------------*/

float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[],
                   COMP rx_symbols[], int old_qpsk_mapping)
{
    int   c;
    COMP  d;
    int   msb=0, lsb=0;
    float ferr, norm;


    /* Extra 45 degree clockwise lets us use real and imag axis as
       decision boundaries. "norm" makes sure the phase subtraction
       from the previous symbol doesn't affect the amplitude, which
       leads to sensible scatter plots */

    for(c=0; c<Nc; c++) {
        norm = 1.0/(cabsolute(prev_rx_symbols[c])+1E-6);
	phase_difference[c] = cmult(cmult(rx_symbols[c], fcmult(norm,cconj(prev_rx_symbols[c]))), pi_on_4);
    }

    /* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */

    for (c=0; c<Nc; c++) {
      d = phase_difference[c];
      if ((d.real >= 0) && (d.imag >= 0)) {
          msb = 0; lsb = 0;
      }
      if ((d.real < 0) && (d.imag >= 0)) {
          msb = 0; lsb = 1;
      }
      if ((d.real < 0) && (d.imag < 0)) {
          if (old_qpsk_mapping) {
              msb = 1; lsb = 0;
          } else {
              msb = 1; lsb = 1;
          }
      }
      if ((d.real >= 0) && (d.imag < 0)) {
          if (old_qpsk_mapping) {
              msb = 1; lsb = 1;
          } else {
              msb = 1; lsb = 0;
          }
      }
      rx_bits[2*c] = msb;
      rx_bits[2*c+1] = lsb;
    }

    /* Extract DBPSK encoded Sync bit and fine freq offset estimate */

    norm = 1.0/(cabsolute(prev_rx_symbols[Nc])+1E-6);
    phase_difference[Nc] = cmult(rx_symbols[Nc], fcmult(norm, cconj(prev_rx_symbols[Nc])));
    if (phase_difference[Nc].real < 0) {
      *sync_bit = 1;
      ferr = phase_difference[Nc].imag*norm;    /* make f_err magnitude insensitive */
    }
    else {
      *sync_bit = 0;
      ferr = -phase_difference[Nc].imag*norm;
    }

    /* pilot carrier gets an extra pi/4 rotation to make it consistent
       with other carriers, as we need it for snr_update and scatter
       diagram */

    phase_difference[Nc] = cmult(phase_difference[Nc], pi_on_4);

    return ferr;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: snr_update()
  AUTHOR......: David Rowe
  DATE CREATED: 17 May 2012

  Given phase differences update estimates of signal and noise levels.

\*---------------------------------------------------------------------------*/

void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[])
{
    float s[NC+1];
    COMP  refl_symbols[NC+1];
    float n[NC+1];
    int   c;


    /* mag of each symbol is distance from origin, this gives us a
       vector of mags, one for each carrier. */

    for(c=0; c<Nc+1; c++)
	s[c] = cabsolute(phase_difference[c]);

    /* signal mag estimate for each carrier is a smoothed version of
       instantaneous magntitude, this gives us a vector of smoothed
       mag estimates, one for each carrier. */

    for(c=0; c<Nc+1; c++)
	sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c];

    /* noise mag estimate is distance of current symbol from average
       location of that symbol.  We reflect all symbols into the first
       quadrant for convenience. */

    for(c=0; c<Nc+1; c++) {
	refl_symbols[c].real = fabsf(phase_difference[c].real);
	refl_symbols[c].imag = fabsf(phase_difference[c].imag);
	n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c])));
    }

    /* noise mag estimate for each carrier is a smoothed version of
       instantaneous noise mag, this gives us a vector of smoothed
       noise power estimates, one for each carrier. */

    for(c=0; c<Nc+1; c++)
	noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c];
}

// returns number of shorts in error_pattern[], one short per error

int fdmdv_error_pattern_size(struct FDMDV *f) {
    return f->ntest_bits;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_put_test_bits()
  AUTHOR......: David Rowe
  DATE CREATED: 24/4/2012

  Accepts nbits from rx and attempts to sync with test_bits sequence.
  If sync OK measures bit errors.

\*---------------------------------------------------------------------------*/

void fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[],
			 int *bit_errors, int *ntest_bits, int rx_bits[])
{
    int   i,j;
    float ber;
    int   bits_per_frame = fdmdv_bits_per_frame(f);

    /* Append to our memory */

    for(i=0,j=bits_per_frame; i<f->ntest_bits-bits_per_frame; i++,j++)
	f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j];
    for(i=f->ntest_bits-bits_per_frame,j=0; i<f->ntest_bits; i++,j++)
	f->rx_test_bits_mem[i] = rx_bits[j];

    /* see how many bit errors we get when checked against test sequence */

    *bit_errors = 0;
    for(i=0; i<f->ntest_bits; i++) {
        error_pattern[i] = test_bits[i] ^ f->rx_test_bits_mem[i];
	*bit_errors += error_pattern[i];
	//printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]);
    }

    /* if less than a thresh we are aligned and in sync with test sequence */

    ber = (float)*bit_errors/f->ntest_bits;

    *sync = 0;
    if (ber < 0.2)
	*sync = 1;

    *ntest_bits = f->ntest_bits;

}

/*---------------------------------------------------------------------------*\

  FUNCTION....: freq_state(()
  AUTHOR......: David Rowe
  DATE CREATED: 24/4/2012

  Freq offset state machine.  Moves between coarse and fine states
  based on BPSK pilot sequence.  Freq offset estimator occasionally
  makes mistakes when used continuously.  So we use it until we have
  acquired the BPSK pilot, then switch to a more robust "fine"
  tracking algorithm.  If we lose sync we switch back to coarse mode
  for fast re-acquisition of large frequency offsets.

  The sync state is also useful for higher layers to determine when
  there is valid FDMDV data for decoding.  We want to reliably and
  quickly get into sync, stay in sync even on fading channels, and
  fall out of sync quickly if tx stops or it's a false sync.

  In multipath fading channels the BPSK sync carrier may be pushed
  down in the noise, despite other carriers being at full strength.
  We want to avoid loss of sync in these cases.

\*---------------------------------------------------------------------------*/

int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem)
{
    int next_state, sync, unique_word, i, corr;

    /* look for 6 symbols (120ms) 101010 of sync sequence */

    unique_word = 0;
    for(i=0; i<NSYNC_MEM-1; i++)
        sync_mem[i] = sync_mem[i+1];
    sync_mem[i] = 1 - 2*sync_bit;
    corr = 0;
    for(i=0; i<NSYNC_MEM; i++)
        corr += sync_mem[i]*sync_uw[i];
    if (abs(corr) == NSYNC_MEM)
        unique_word = 1;
    *reliable_sync_bit = (corr == NSYNC_MEM);

    /* iterate state machine */

    next_state = *state;
    switch(*state) {
    case 0:
	if (unique_word) {
	    next_state = 1;
            *timer = 0;
        }
	break;
    case 1:                   /* tentative sync state         */
	if (unique_word) {
            (*timer)++;
            if (*timer == 25) /* sync has been good for 500ms */
                next_state = 2;
        }
	else
	    next_state = 0;  /* quickly fall out of sync     */
	break;
    case 2:                  /* good sync state */
	if (unique_word == 0) {
            *timer = 0;
	    next_state = 3;
        }
	break;
    case 3:                  /* tentative bad state, but could be a fade */
	if (unique_word)
	    next_state = 2;
	else  {
            (*timer)++;
            if (*timer == 50) /* wait for 1000ms in case sync comes back  */
                next_state = 0;
        }
	break;
    }

    //printf("state: %d next_state: %d uw: %d timer: %d\n", *state, next_state, unique_word, *timer);
    *state = next_state;
    if (*state)
	sync = 1;
    else
	sync = 0;

    return sync;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_demod()
  AUTHOR......: David Rowe
  DATE CREATED: 26/4/2012

  FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME
  modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits,
  plus the sync bit.

  The input signal is complex to support single sided frequency shifting
  before the demod input (e.g. fdmdv2 click to tune feature).

  The number of input samples nin will normally be M_FAC ==
  FDMDV_SAMPLES_PER_FRAME.  However to adjust for differences in
  transmit and receive sample clocks nin will occasionally be M_FAC-M_FAC/P,
  or M_FAC+M_FAC/P.

\*---------------------------------------------------------------------------*/


void fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[],
		 int *reliable_sync_bit, COMP rx_fdm[], int *nin)
{
    float         foff_coarse, foff_fine;
    COMP          rx_fdm_fcorr[M_FAC+M_FAC/P];
    COMP          rx_fdm_filter[M_FAC+M_FAC/P];
    COMP          rx_fdm_bb[M_FAC+M_FAC/P];
    COMP          rx_filt[NC+1][P+1];
    COMP          rx_symbols[NC+1];
    float         env[NT*P];
    int           sync_bit;
    PROFILE_VAR(demod_start, fdmdv_freq_shift_start, down_convert_and_rx_filter_start);
    PROFILE_VAR(rx_est_timing_start, qpsk_to_bits_start, snr_update_start, freq_state_start);

    /* shift down to complex baseband */

    fdmdv_freq_shift(rx_fdm_bb, rx_fdm, -FDMDV_FCENTRE, &fdmdv->fbb_phase_rx, *nin);

    /* freq offset estimation and correction */

    PROFILE_SAMPLE(demod_start);
    foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm_bb, *nin, !fdmdv->sync);
    PROFILE_SAMPLE_AND_LOG(fdmdv_freq_shift_start, demod_start, "    rx_est_freq_offset");

    if (fdmdv->sync == 0)
	fdmdv->foff = foff_coarse;
    fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm_bb, -fdmdv->foff, &fdmdv->foff_phase_rect, *nin);
    PROFILE_SAMPLE_AND_LOG(down_convert_and_rx_filter_start, fdmdv_freq_shift_start, "    fdmdv_freq_shift");

    /* baseband processing */

    rxdec_filter(rx_fdm_filter, rx_fdm_fcorr, fdmdv->rxdec_lpf_mem, *nin);
    down_convert_and_rx_filter(rx_filt, fdmdv->Nc, rx_fdm_filter, fdmdv->rx_fdm_mem, fdmdv->phase_rx, fdmdv->freq,
                               fdmdv->freq_pol, *nin, M_FAC/Q);
    PROFILE_SAMPLE_AND_LOG(rx_est_timing_start, down_convert_and_rx_filter_start, "    down_convert_and_rx_filter");
    fdmdv->rx_timing = rx_est_timing(rx_symbols, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, *nin, M_FAC);
    PROFILE_SAMPLE_AND_LOG(qpsk_to_bits_start, rx_est_timing_start, "    rx_est_timing");

    /* Adjust number of input samples to keep timing within bounds */

    *nin = M_FAC;

    if (fdmdv->rx_timing > M_FAC/P)
	*nin += M_FAC/P;

    if (fdmdv->rx_timing < -M_FAC/P)
	*nin -= M_FAC/P;

    foff_fine = qpsk_to_bits(rx_bits, &sync_bit, fdmdv->Nc, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols,
                             fdmdv->old_qpsk_mapping);
    memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
    PROFILE_SAMPLE_AND_LOG(snr_update_start, qpsk_to_bits_start, "    qpsk_to_bits");
    snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->Nc, fdmdv->phase_difference);
    PROFILE_SAMPLE_AND_LOG(freq_state_start, snr_update_start, "    snr_update");

    /* freq offset estimation state machine */

    fdmdv->sync = freq_state(reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem);
    PROFILE_SAMPLE_AND_LOG2(freq_state_start, "    freq_state");
    fdmdv->foff  -= TRACK_COEFF*foff_fine;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: calc_snr()
  AUTHOR......: David Rowe
  DATE CREATED: 17 May 2012

  Calculate current SNR estimate (3000Hz noise BW)

\*---------------------------------------------------------------------------*/

float calc_snr(int Nc, float sig_est[], float noise_est[])
{
    float S, SdB;
    float mean, N50, N50dB, N3000dB;
    float snr_dB;
    int   c;

    S = 0.0;
    for(c=0; c<Nc+1; c++) {
        S += sig_est[c] * sig_est[c];
    }
    SdB = 10.0*log10f(S+1E-12);

    /* Average noise mag across all carriers and square to get an
       average noise power.  This is an estimate of the noise power in
       Rs = 50Hz of BW (note for raised root cosine filters Rs is the
       noise BW of the filter) */

    mean = 0.0;
    for(c=0; c<Nc+1; c++)
	mean += noise_est[c];
    mean /= (Nc+1);
    N50 = mean * mean;
    N50dB = 10.0*log10f(N50+1E-12);

    /* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power
       in 3000 Hz */

    N3000dB = N50dB + 10.0*log10f(3000.0/RS);

    snr_dB = SdB - N3000dB;

    return snr_dB;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_get_demod_stats()
  AUTHOR......: David Rowe
  DATE CREATED: 1 May 2012

  Fills stats structure with a bunch of demod information.

\*---------------------------------------------------------------------------*/

void fdmdv_get_demod_stats(struct FDMDV *fdmdv, struct MODEM_STATS *stats)
{
    assert(fdmdv->Nc <= MODEM_STATS_NC_MAX);

    stats->Nc = fdmdv->Nc;
    stats->snr_est = calc_snr(fdmdv->Nc, fdmdv->sig_est, fdmdv->noise_est);
    stats->sync = fdmdv->sync;
    stats->foff = fdmdv->foff;
    stats->rx_timing = fdmdv->rx_timing;
    stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */

#ifndef __EMBEDDED__
    stats->nr = 1;
    for(int c=0; c<fdmdv->Nc+1; c++) {
	stats->rx_symbols[0][c] = fdmdv->phase_difference[c];
    }
#endif
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_8_to_16()
  AUTHOR......: David Rowe
  DATE CREATED: 9 May 2012

  Changes the sample rate of a signal from 8 to 16 kHz.  Support function for
  SM1000.

\*---------------------------------------------------------------------------*/

void fdmdv_8_to_16(float out16k[], float in8k[], int n8k)
{
    int i,k,l;
    float acc;

    /* this version unrolled for specific FDMDV_OS */

    assert(FDMDV_OS == 2);

    for(i=0; i<n8k; i++) {
        acc = 0.0;
        for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
            acc += fdmdv_os_filter[k]*in8k[i-l];
        out16k[i*FDMDV_OS] = FDMDV_OS*acc;

        acc = 0.0;
        for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
            acc += fdmdv_os_filter[k]*in8k[i-l];
        out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
    }

    /* update filter memory */

    for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
	in8k[i] = in8k[i + n8k];

}

void fdmdv_8_to_16_short(short out16k[], short in8k[], int n8k)
{
    int i,k,l;
    float acc;

    /* this version unrolled for specific FDMDV_OS */

    assert(FDMDV_OS == 2);

    for(i=0; i<n8k; i++) {
        acc = 0.0;
        for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
            acc += fdmdv_os_filter[k]*(float)in8k[i-l];
        out16k[i*FDMDV_OS] = FDMDV_OS*acc;

        acc = 0.0;
        for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
            acc += fdmdv_os_filter[k]*(float)in8k[i-l];
        out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
    }

    /* update filter memory */

    for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
	in8k[i] = in8k[i + n8k];

}

/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_16_to_8()
  AUTHOR......: David Rowe
  DATE CREATED: 9 May 2012

  Changes the sample rate of a signal from 16 to 8 kHz.

  n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n
  samples at the 16 kHz rate.  As above however a memory of
  FDMDV_OS_TAPS samples is reqd for in16k[] (see t16_8.c unit test as example).

  Low pass filter the 16 kHz signal at 4 kHz using the same filter as
  the upsampler, then just output every FDMDV_OS-th filtered sample.

\*---------------------------------------------------------------------------*/

void fdmdv_16_to_8(float out8k[], float in16k[], int n)
{
    float acc;
    int   i,j,k;

    for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
	acc = 0.0;
	for(j=0; j<FDMDV_OS_TAPS_16K; j++)
	    acc += fdmdv_os_filter[j]*in16k[i-j];
        out8k[k] = acc;
    }

    /* update filter memory */

    for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
	in16k[i] = in16k[i + n*FDMDV_OS];
}

void fdmdv_16_to_8_short(short out8k[], short in16k[], int n)
{
    float acc;
    int i,j,k;

    for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
	acc = 0.0;
	for(j=0; j<FDMDV_OS_TAPS_16K; j++)
	    acc += fdmdv_os_filter[j]*(float)in16k[i-j];
        out8k[k] = acc;
    }

    /* update filter memory */

    for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
	in16k[i] = in16k[i + n*FDMDV_OS];
}


/*---------------------------------------------------------------------------*\
                                                       
  FUNCTION....: fdmdv_8_to_48()	     
  AUTHOR......: David Rowe			      
  DATE CREATED: 9 May 2012

  Changes the sample rate of a signal from 8 to 48 kHz.

  n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n samples
  at the 48 kHz rate.  A memory of FDMDV_OS_TAPS_48/FDMDV_OS samples is reqd for
  in8k[] (see t48_8.c unit test as example).

\*---------------------------------------------------------------------------*/

void fdmdv_8_to_48(float out48k[], float in8k[], int n)
{
    int i,j,k,l;

    for(i=0; i<n; i++) {
	for(j=0; j<FDMDV_OS_48; j++) {
	    out48k[i*FDMDV_OS_48+j] = 0.0;
	    for(k=0,l=0; k<FDMDV_OS_TAPS_48K; k+=FDMDV_OS_48,l++)
		out48k[i*FDMDV_OS_48+j] += fdmdv_os_filter48[k+j]*in8k[i-l];
	    out48k[i*FDMDV_OS_48+j] *= FDMDV_OS_48;
	    
	}
    }	

    /* update filter memory */

    for(i=-FDMDV_OS_TAPS_48_8K; i<0; i++)
	in8k[i] = in8k[i + n];
}

void fdmdv_8_to_48_short(short out48k[], short in8k[], int n)
{
    int i,j,k,l;
    float acc;
    
    for(i=0; i<n; i++) {
	for(j=0; j<FDMDV_OS_48; j++) {
	    acc = 0.0;
	    for(k=0,l=0; k<FDMDV_OS_TAPS_48K; k+=FDMDV_OS_48,l++)
		acc += fdmdv_os_filter48[k+j]*in8k[i-l];
	    out48k[i*FDMDV_OS_48+j] = acc*FDMDV_OS_48;	    
	}
    }	

    /* update filter memory */

    for(i=-FDMDV_OS_TAPS_48_8K; i<0; i++)
	in8k[i] = in8k[i + n];
}

/*---------------------------------------------------------------------------*\
                                                       
  FUNCTION....: fdmdv_48_to_8()	     
  AUTHOR......: David Rowe			      
  DATE CREATED: 9 May 2012

  Changes the sample rate of a signal from 48 to 8 kHz.
 
  n is the number of samples at the 8 kHz rate, there are FDMDV_OS_48*n
  samples at the 48 kHz rate.  As above however a memory of
  FDMDV_OS_TAPS_48 samples is reqd for in48k[] (see t48_8.c unit test as example).

\*---------------------------------------------------------------------------*/

void fdmdv_48_to_8(float out8k[], float in48k[], int n)
{
    int i,j;

    for(i=0; i<n; i++) {
	out8k[i] = 0.0;
	for(j=0; j<FDMDV_OS_TAPS_48K; j++)
	    out8k[i] += fdmdv_os_filter48[j]*in48k[i*FDMDV_OS_48-j];
    }

    /* update filter memory */

    for(i=-FDMDV_OS_TAPS_48K; i<0; i++)
	in48k[i] = in48k[i + n*FDMDV_OS_48];
}

void fdmdv_48_to_8_short(short out8k[], short in48k[], int n)
{
    int i,j;
    float acc;
    
    for(i=0; i<n; i++) {
	acc = 0.0;
	for(j=0; j<FDMDV_OS_TAPS_48K; j++)
	    acc += fdmdv_os_filter48[j]*in48k[i*FDMDV_OS_48-j];
        out8k[i] = acc;
    }

    /* update filter memory */

    for(i=-FDMDV_OS_TAPS_48K; i<0; i++)
	in48k[i] = in48k[i + n*FDMDV_OS_48];
}

/*---------------------------------------------------------------------------*\

  Function used during development to test if magnitude of digital
  oscillators was drifting.  It was!

\*---------------------------------------------------------------------------*/

void fdmdv_dump_osc_mags(struct FDMDV *f)
{
    int   i;

    fprintf(stderr, "phase_tx[]:\n");
    for(i=0; i<=f->Nc; i++)
	fprintf(stderr,"  %1.3f", (double)cabsolute(f->phase_tx[i]));
    fprintf(stderr,"\nfreq[]:\n");
    for(i=0; i<=f->Nc; i++)
	fprintf(stderr,"  %1.3f", (double)cabsolute(f->freq[i]));
    fprintf(stderr,"\nfoff_phase_rect: %1.3f", (double)cabsolute(f->foff_phase_rect));
    fprintf(stderr,"\nphase_rx[]:\n");
    for(i=0; i<=f->Nc; i++)
	fprintf(stderr,"  %1.3f", (double)cabsolute(f->phase_rx[i]));
    fprintf(stderr, "\n\n");
}


/*---------------------------------------------------------------------------*\

  FUNCTION....: randn()
  AUTHOR......: David Rowe
  DATE CREATED: 2 August 2014

  Simple approximation to normal (gaussian) random number generator
  with 0 mean and unit variance.

\*---------------------------------------------------------------------------*/

#define RANDN_IT 12  /* This magic number of iterations gives us a
                        unit variance.  I think because var =
                        (b-a)^2/12 for one uniform random variable, so
                        for a sum of n random variables it's
                        n(b-a)^2/12, or for b=1, a = 0, n=12, we get
                        var = 12(1-0)^2/12 = 1 */

static float randn() {
    int   i;
    float rn = 0.0;

    for(i=0; i<RANDN_IT; i++)
        rn += (float)rand()/RAND_MAX;

    rn -= (float)RANDN_IT/2.0;
    return rn;
}


/*---------------------------------------------------------------------------*\

  FUNCTION....: fdmdv_simulate_channel()
  AUTHOR......: David Rowe
  DATE CREATED: 10 July 2014

  Simple channel simulation function to aid in testing.  Target SNR
  uses noise measured in a 3 kHz bandwidth.

  Doesn't use fdmdv states so can be called from anywhere, e.g. non
  fdmdv applications.

  TODO: Measured SNR is coming out a few dB higher than target_snr, this
  needs to be fixed.

\*---------------------------------------------------------------------------*/

void fdmdv_simulate_channel(float *sig_pwr_av, COMP samples[], int nin, float target_snr)
{
    float sig_pwr, target_snr_linear, noise_pwr, noise_pwr_1Hz, noise_pwr_4000Hz, noise_gain;
    int   i;

    /* prevent NAN when we divide by nin below */
    if (nin == 0) return;

    /* estimate signal power */

    sig_pwr = 0.0;
    for(i=0; i<nin; i++)
        sig_pwr += samples[i].real*samples[i].real + samples[i].imag*samples[i].imag;

    sig_pwr /= nin;

    *sig_pwr_av = 0.9**sig_pwr_av + 0.1*sig_pwr;

    /* det noise to meet target SNR */

    target_snr_linear = POW10F(target_snr/10.0);
    noise_pwr = *sig_pwr_av/target_snr_linear;       /* noise pwr in a 3000 Hz BW     */
    noise_pwr_1Hz = noise_pwr/3000.0;                  /* noise pwr in a 1 Hz bandwidth */
    noise_pwr_4000Hz = noise_pwr_1Hz*4000.0;           /* noise pwr in a 4000 Hz BW, which
                                                          due to fs=8000 Hz in our simulation noise BW */

    noise_gain = sqrtf(0.5*noise_pwr_4000Hz);          /* split noise pwr between real and imag sides  */

    for(i=0; i<nin; i++) {
        samples[i].real += noise_gain*randn();
        samples[i].imag += noise_gain*randn();
    }
    /*
    fprintf(stderr, "sig_pwr: %f f->sig_pwr_av: %e target_snr_linear: %f noise_pwr_4000Hz: %e noise_gain: %e\n",
            sig_pwr, *sig_pwr_av, target_snr_linear, noise_pwr_4000Hz, noise_gain);
    */
}