1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/*---------------------------------------------------------------------------*\
FILE........: stm32f4_adc.c
AUTHOR......: David Rowe
DATE CREATED: 4 June 2013
Two channel ADC driver module for STM32F4. Pin PA1 connects to ADC1, pin
PA2 connects to ADC2.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2013 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "stm32f4xx_adc.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#include "codec2_fifo.h"
#include "stm32f4_adc.h"
#include "debugblinky.h"
struct FIFO *adc1_fifo;
struct FIFO *adc2_fifo;
unsigned short adc_buf[ADC_BUF_SZ];
int adc_overflow1, adc_overflow2;
int half,full;
#define ADCx_DR_ADDRESS ((uint32_t)0x4001204C)
#define DMA_CHANNELx DMA_Channel_0
#define DMA_STREAMx DMA2_Stream0
#define ADCx ADC1
void adc_configure();
static void tim2_config(int fs_divisor);
// You can optionally supply your own storage for the FIFO buffers bu1 and buf2,
// or set them to NULL and they will be malloc-ed for you
void adc_open(int fs_divisor, int fifo_sz, short *buf1, short *buf2) {
if (buf1 == NULL) {
adc1_fifo = codec2_fifo_create(fifo_sz);
adc2_fifo = codec2_fifo_create(fifo_sz);
} else {
adc1_fifo = codec2_fifo_create_buf(fifo_sz, buf1);
adc2_fifo = codec2_fifo_create_buf(fifo_sz, buf2);
}
tim2_config(fs_divisor);
adc_configure();
init_debug_blinky();
}
/* n signed 16 bit samples in buf[] if return != -1 */
int adc1_read(short buf[], int n) {
return codec2_fifo_read(adc1_fifo, buf, n);
}
/* n signed 16 bit samples in buf[] if return != -1 */
int adc2_read(short buf[], int n) {
return codec2_fifo_read(adc2_fifo, buf, n);
}
/* Returns number of signed 16 bit samples in the FIFO currently */
int adc1_samps(){
return codec2_fifo_used(adc1_fifo);
}
/* Returns number of signed 16 bit samples in the FIFO currently */
int adc2_samps(){
return codec2_fifo_used(adc2_fifo);
}
static void tim2_config(int fs_divisor)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
/* TIM2 Periph clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/* --------------------------------------------------------
TIM2 input clock (TIM2CLK) is set to 2 * APB1 clock (PCLK1), since
APB1 prescaler is different from 1 (see system_stm32f4xx.c and Fig
13 clock tree figure in DM0031020.pdf).
Sample rate Fs = 2*PCLK1/TIM_ClockDivision
= (HCLK/2)/TIM_ClockDivision
----------------------------------------------------------- */
/* Time base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = fs_divisor - 1;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
/* TIM2 TRGO selection */
TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update);
/* TIM2 enable counter */
TIM_Cmd(TIM2, ENABLE);
}
void adc_configure(){
ADC_InitTypeDef ADC_init_structure;
GPIO_InitTypeDef GPIO_initStructre;
DMA_InitTypeDef DMA_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
// Clock configuration
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1ENR_GPIOAEN,ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
// Analog pin configuration ADC1->PA1, ADC2->PA2
GPIO_initStructre.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;
GPIO_initStructre.GPIO_Mode = GPIO_Mode_AN;
GPIO_initStructre.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA,&GPIO_initStructre);
// ADC structure configuration
ADC_DeInit();
ADC_init_structure.ADC_DataAlign = ADC_DataAlign_Left;
ADC_init_structure.ADC_Resolution = ADC_Resolution_12b;
ADC_init_structure.ADC_ContinuousConvMode = DISABLE;
ADC_init_structure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_TRGO;
ADC_init_structure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
ADC_init_structure.ADC_NbrOfConversion = 2;
ADC_init_structure.ADC_ScanConvMode = ENABLE;
ADC_Init(ADCx,&ADC_init_structure);
// Select the channel to be read from
ADC_RegularChannelConfig(ADCx,ADC_Channel_1,1,ADC_SampleTime_144Cycles);
ADC_RegularChannelConfig(ADCx,ADC_Channel_2,2,ADC_SampleTime_144Cycles);
//ADC_VBATCmd(ENABLE);
/* DMA configuration **************************************/
DMA_DeInit(DMA_STREAMx);
DMA_InitStructure.DMA_Channel = DMA_CHANNELx;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADCx_DR_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adc_buf;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = ADC_BUF_SZ;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA_STREAMx, &DMA_InitStructure);
/* Enable DMA request after last transfer (Single-ADC mode) */
ADC_DMARequestAfterLastTransferCmd(ADCx, ENABLE);
/* Enable ADC1 DMA */
ADC_DMACmd(ADCx, ENABLE);
/* DMA2_Stream0 enable */
DMA_Cmd(DMA_STREAMx, ENABLE);
/* Enable DMA Half & Complete interrupts */
DMA_ITConfig(DMA2_Stream0, DMA_IT_TC | DMA_IT_HT, ENABLE);
/* Enable the DMA Stream IRQ Channel */
NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// Enable and start ADC conversion
ADC_Cmd(ADC1,ENABLE);
ADC_SoftwareStartConv(ADC1);
}
/*
This function handles DMA Stream interrupt request.
*/
void DMA2_Stream0_IRQHandler(void) {
int i, j, sam;
short signed_buf1[ADC_BUF_SZ/2];
short signed_buf2[ADC_BUF_SZ/2];
GPIOE->ODR |= (1 << 0);
/* Half transfer interrupt */
if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_HTIF0) != RESET) {
half++;
/* convert to signed */
for(i=0, j=0; i<ADC_BUF_SZ/2; i+=2,j++) {
sam = (int)adc_buf[i] - 32768;
signed_buf1[j] = sam;
sam = (int)adc_buf[i+1] - 32768;
signed_buf2[j] = sam;
}
/* write first half to fifo */
if (codec2_fifo_write(adc1_fifo, signed_buf1, ADC_BUF_SZ/4) == -1) {
adc_overflow1++;
}
if (codec2_fifo_write(adc2_fifo, signed_buf2, ADC_BUF_SZ/4) == -1) {
adc_overflow2++;
}
/* Clear DMA Stream Transfer Complete interrupt pending bit */
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_HTIF0);
}
/* Transfer complete interrupt */
if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) {
full++;
/* convert to signed */
for(i=0, j=0; i<ADC_BUF_SZ/2; i+=2,j++) {
sam = (int)adc_buf[ADC_BUF_SZ/2 + i] - 32768;
signed_buf1[j] = sam;
sam = (int)adc_buf[ADC_BUF_SZ/2 + i+1] - 32768;
signed_buf2[j] = sam;
}
/* write second half to fifo */
if (codec2_fifo_write(adc1_fifo, signed_buf1, ADC_BUF_SZ/4) == -1) {
adc_overflow1++;
}
if (codec2_fifo_write(adc2_fifo, signed_buf2, ADC_BUF_SZ/4) == -1) {
adc_overflow2++;
}
/* Clear DMA Stream Transfer Complete interrupt pending bit */
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0);
}
GPIOE->ODR &= ~(1 << 0);
}
|