aboutsummaryrefslogtreecommitdiff
path: root/octave/cohpsk_dev.m
diff options
context:
space:
mode:
authorMarin Ivanov <[email protected]>2025-07-25 10:17:14 +0300
committerMarin Ivanov <[email protected]>2026-01-18 20:09:26 +0200
commit0168586485e6310c598713c911b1dec5618d61a1 (patch)
tree6aabc2a12ef8fef70683f5389bea00f948015f77 /octave/cohpsk_dev.m
Initial commitHEADmaster
* codec2 cut-down version 1.2.0 * Remove codebook and generation of sources * remove c2dec c2enc binaries * prepare for emscripten
Diffstat (limited to 'octave/cohpsk_dev.m')
-rw-r--r--octave/cohpsk_dev.m439
1 files changed, 439 insertions, 0 deletions
diff --git a/octave/cohpsk_dev.m b/octave/cohpsk_dev.m
new file mode 100644
index 0000000..0807319
--- /dev/null
+++ b/octave/cohpsk_dev.m
@@ -0,0 +1,439 @@
+% cohpsk_dev.m
+% David Rowe Mar 2015
+%
+% Coherent PSK modem development and testing functions
+%
+
+cohpsk_lib;
+
+% Init HF channel model from stored sample files of spreading signal ----------------------------------
+
+function [spread spread_2ms hf_gain] = init_hf_model(Fs, nsam)
+
+ % convert "spreading" samples from 1kHz carrier at Fss to complex
+ % baseband, generated by passing a 1kHz sine wave through PathSim
+ % with the ccir-poor model, enabling one path at a time.
+
+ Fc = 1000; Fss = 8000;
+ fspread = fopen("../raw/sine1k_2Hz_spread.raw","rb");
+ spread1k = fread(fspread, "int16")/10000;
+ fclose(fspread);
+ fspread = fopen("../raw/sine1k_2ms_delay_2Hz_spread.raw","rb");
+ spread1k_2ms = fread(fspread, "int16")/10000;
+ fclose(fspread);
+
+ % down convert to complex baseband
+ spreadbb = spread1k.*exp(-j*(2*pi*Fc/Fss)*(1:length(spread1k))');
+ spreadbb_2ms = spread1k_2ms.*exp(-j*(2*pi*Fc/Fss)*(1:length(spread1k_2ms))');
+
+ % remove -2000 Hz image
+ b = fir1(50, 5/Fss);
+ spread = filter(b,1,spreadbb);
+ spread_2ms = filter(b,1,spreadbb_2ms);
+
+ % discard first 1000 samples as these were near 0, probably as
+ % PathSim states were ramping up
+
+ spread = spread(1000:length(spread));
+ spread_2ms = spread_2ms(1000:length(spread_2ms));
+
+ % change output samples so they are at rate Fs reqd by caller
+
+ spread = resample(spread, Fs, Fss);
+ spread_2ms = resample(spread_2ms, Fs, Fss);
+
+ % Determine "gain" of HF channel model, so we can normalise
+ % carrier power during HF channel sim to calibrate SNR. I imagine
+ % different implementations of ccir-poor would do this in
+ % different ways, leading to different BER results. Oh Well!
+
+ hf_gain = 1.0/sqrt(var(spread(1:nsam))+var(spread_2ms(1:nsam)));
+endfunction
+
+
+function write_pilot_file(pilot, Nsymbrowpilot, Ns, Nsymrow, Npilotsframe, Nc);
+
+ filename = sprintf("../src/cohpsk_defs.h", Npilotsframe, Nc);
+ f=fopen(filename,"wt");
+ fprintf(f,"/* Generated by write_pilot_file() Octave function */\n\n");
+ fprintf(f,"#define NSYMROW %d /* number of data symbols on each row (i.e. each carrier) */\n", Nsymrow);
+ fprintf(f,"#define NS %d /* number of data symbols between pilots */\n", Ns);
+ fprintf(f,"#define NPILOTSFRAME %d /* number of pilot symbols on each row */\n", Npilotsframe);
+ fprintf(f,"#define PILOTS_NC %d /* number of carriers */\n\n", Nc);
+ fprintf(f,"#define NSYMROWPILOT %d /* length of row after pilots inserted */\n\n", Nsymbrowpilot);
+ fclose(f);
+
+ filename = sprintf("../src/pilots_coh.h", Npilotsframe, Nc);
+ f=fopen(filename,"wt");
+ fprintf(f,"/* Generated by write_pilot_file() Octave function */\n\n");
+ fprintf(f,"float pilots_coh[][PILOTS_NC]={\n");
+ for r=1:Npilotsframe
+ fprintf(f, " {");
+ for c=1:Nc-1
+ fprintf(f, " %f,", pilot(r, c));
+ end
+ if r < Npilotsframe
+ fprintf(f, " %f},\n", pilot(r, Nc));
+ else
+ fprintf(f, " %f}\n};", pilot(r, Nc));
+ end
+ end
+ fclose(f);
+endfunction
+
+
+% Save test bits frame to a text file in the form of a C array
+
+function test_bits_coh_file(test_bits_coh)
+
+ f=fopen("../src/test_bits_coh.h","wt");
+ fprintf(f,"/* Generated by test_bits_coh_file() Octave function */\n\n");
+ fprintf(f,"const int test_bits_coh[]={\n");
+ for m=1:length(test_bits_coh)-1
+ fprintf(f," %d,\n",test_bits_coh(m));
+ endfor
+ fprintf(f," %d\n};\n",test_bits_coh(length(test_bits_coh)));
+ fclose(f);
+
+endfunction
+
+
+% Rate Rs BER tests ------------------------------------------------------------------------------
+
+function sim_out = ber_test(sim_in)
+ sim_in = symbol_rate_init(sim_in);
+
+ Fs = sim_in.Fs;
+ Rs = sim_in.Rs;
+ Ntrials = sim_in.Ntrials;
+ verbose = sim_in.verbose;
+ plot_scatter = sim_in.plot_scatter;
+ framesize = sim_in.framesize;
+ bps = sim_in.bps;
+
+ Esvec = sim_in.Esvec;
+ ldpc_code = sim_in.ldpc_code;
+ rate = sim_in.ldpc_code_rate;
+ code_param = sim_in.code_param;
+ tx_bits_buf = sim_in.tx_bits_buf;
+ Nsymb = sim_in.Nsymb;
+ Nsymbrow = sim_in.Nsymbrow;
+ Nsymbrowpilot = sim_in.Nsymbrowpilot;
+ Nc = sim_in.Nc;
+ Npilotsframe = sim_in.Npilotsframe;
+ Ns = sim_in.Ns;
+ Np = sim_in.Np;
+ Nd = sim_in.Nd;
+ modulation = sim_in.modulation;
+ pilot = sim_in.pilot;
+ prev_sym_tx = sim_in.prev_sym_tx;
+ prev_sym_rx = sim_in.prev_sym_rx;
+ rx_symb_buf = sim_in.rx_symb_buf;
+ tx_pilot_buf = sim_in.tx_pilot_buf;
+ rx_pilot_buf = sim_in.rx_pilot_buf;
+
+ hf_sim = sim_in.hf_sim;
+ nhfdelay = sim_in.hf_delay_ms*Rs/1000;
+ hf_mag_only = sim_in.hf_mag_only;
+ f_off = sim_in.f_off;
+ div_time_shift = sim_in.div_timeshift;
+
+ [spread spread_2ms hf_gain] = init_hf_model(Rs, Nsymbrowpilot*(Ntrials+2));
+
+ if strcmp(modulation,'dqpsk')
+ Nsymbrowpilot = Nsymbrow;
+ end
+
+ % Start Simulation ----------------------------------------------------------------
+
+ for ne = 1:length(Esvec)
+ EsNodB = Esvec(ne);
+ EsNo = 10^(EsNodB/10);
+
+ variance = 1/EsNo;
+ if verbose > 1
+ printf("EsNo (dB): %f EsNo: %f variance: %f\n", EsNodB, EsNo, variance);
+ end
+
+ Terrs = 0; Tbits = 0;
+
+ s_ch_tx_log = [];
+ rx_symb_log = [];
+ noise_log = [];
+ errors_log = [];
+ Nerrs_log = [];
+ phi_log = [];
+ amp_log = [];
+ EsNo__log = [];
+
+ ldpc_errors_log = []; ldpc_Nerrs_log = [];
+
+ Terrsldpc = Tbitsldpc = Ferrsldpc = 0;
+
+ % init HF channel
+
+ hf_n = 1;
+
+ phase_offset_rect = 1;
+ w_offset = 2*pi*f_off/Rs;
+ w_offset_rect = exp(j*w_offset);
+
+ ct_symb_buf = zeros(2*Nsymbrowpilot, Nc*Nd);
+ prev_tx_symb = prev_rx_symb = ones(1, Nc*Nd);
+
+ % simulation starts here-----------------------------------
+
+ for nn = 1:Ntrials+2
+
+ if ldpc_code
+ tx_bits = round(rand(1,framesize*rate));
+ else
+ tx_bits = round(rand(1,framesize));
+ end
+
+ if strcmp(modulation,'qpsk')
+ [tx_symb tx_bits] = bits_to_qpsk_symbols(sim_in, tx_bits, code_param);
+
+ % one frame delay on bits for qpsk
+
+ tx_bits_buf(1:framesize) = tx_bits_buf(framesize+1:2*framesize);
+ tx_bits_buf(framesize+1:2*framesize) = tx_bits;
+
+ end
+ if strcmp(modulation, 'dqpsk')
+ [tx_symb prev_tx_symb] = bits_to_dqpsk_symbols(sim_in, tx_bits, prev_tx_symb);
+ tx_bits_buf(1:framesize) = tx_bits;
+ end
+
+ s_ch = tx_symb;
+
+ % HF channel simulation ------------------------------------
+
+ hf_fading = ones(1,Nsymb);
+ if hf_sim
+
+ % separation between carriers. Note this effectively
+ % under samples at Rs, I dont think this matters.
+ % Equivalent to doing freq shift at Fs, then
+ % decimating to Rs.
+
+ wsep = 2*pi*(1+0.5); % e.g. 75Hz spacing at Rs=50Hz, alpha=0.5 filters
+
+ hf_model(hf_n, :) = zeros(1,Nc*Nd);
+
+ for r=1:Nsymbrowpilot
+ for c=1:Nd*Nc
+ if c > Nc
+ time_shift = sim_in.div_timeshift;
+ else
+ time_shift = 1;
+ end
+ ahf_model = hf_gain*(spread(hf_n+time_shift) + exp(-j*c*wsep*nhfdelay)*spread_2ms(hf_n+time_shift));
+
+ if hf_mag_only
+ s_ch(r,c) *= abs(ahf_model);
+ else
+ s_ch(r,c) *= ahf_model;
+ end
+ hf_model(hf_n, c) = ahf_model;
+ end
+ hf_n++;
+ end
+ end
+
+ % keep a record of each tx symbol so we can check average power
+
+ for r=1:Nsymbrow
+ for c=1:Nd*Nc
+ s_ch_tx_log = [s_ch_tx_log s_ch(r,c)];
+ end
+ end
+
+ % AWGN noise and phase/freq offset channel simulation
+ % 0.5 factor ensures var(noise) == variance , i.e. splits power between Re & Im
+
+ noise = sqrt(variance*0.5)*(randn(Nsymbrowpilot,Nc*Nd) + j*randn(Nsymbrowpilot,Nc*Nd));
+ noise_log = [noise_log noise];
+
+ for r=1:Nsymbrowpilot
+ s_ch(r,:) *= phase_offset_rect;
+ phase_offset_rect *= w_offset_rect;
+ end
+ s_ch += noise;
+
+ ct_symb_buf(1:Nsymbrowpilot,:) = ct_symb_buf(Nsymbrowpilot+1:2*Nsymbrowpilot,:);
+ ct_symb_buf(Nsymbrowpilot+1:2*Nsymbrowpilot,:) = s_ch;
+
+ if strcmp(modulation,'qpsk')
+ [rx_symb rx_bits rx_symb_linear amp_ phi_ sig_rms noise_rms sim_in] = qpsk_symbols_to_bits(sim_in, ct_symb_buf(1:Nsymbrowpilot+Npilotsframe,:));
+ phi_log = [phi_log; phi_];
+ amp_log = [amp_log; amp_];
+ end
+ if strcmp(modulation,'dqpsk')
+ [rx_symb rx_bits rx_symb_linear prev_rx_symb] = dqpsk_symbols_to_bits(sim_in, s_ch, prev_rx_symb);
+ end
+
+ % Wait until we have enough frames to do pilot assisted phase estimation
+
+ if nn > 1
+ rx_symb_log = [rx_symb_log rx_symb_linear];
+ %EsNo__log = [EsNo__log EsNo_];
+
+ % Measure BER
+
+ error_positions = xor(rx_bits, tx_bits_buf(1:framesize));
+ Nerrs = sum(error_positions);
+ Terrs += Nerrs;
+ Tbits += length(tx_bits);
+ errors_log = [errors_log error_positions];
+ Nerrs_log = [Nerrs_log Nerrs];
+
+ % Optionally LDPC decode
+
+ if ldpc_code
+ detected_data = ldpc_dec(code_param, sim_in.max_iterations, sim_in.demod_type, sim_in.decoder_type, ...
+ rx_symb_linear, min(100,EsNo_), amp_linear);
+ error_positions = xor( detected_data(1:framesize*rate), tx_bits_buf(1:framesize*rate) );
+ Nerrs = sum(error_positions);
+ ldpc_Nerrs_log = [ldpc_Nerrs_log Nerrs];
+ ldpc_errors_log = [ldpc_errors_log error_positions];
+ if Nerrs
+ Ferrsldpc++;
+ end
+ Terrsldpc += Nerrs;
+ Tbitsldpc += framesize*rate;
+ end
+ end
+ end
+
+ TERvec(ne) = Terrs;
+ BERvec(ne) = Terrs/Tbits;
+
+ if verbose
+ av_tx_pwr = (s_ch_tx_log * s_ch_tx_log')/length(s_ch_tx_log);
+
+ printf("EsNo (dB): %3.1f Terrs: %d Tbits: %d BER %5.3f QPSK BER theory %5.3f av_tx_pwr: %3.2f",
+ EsNodB, Terrs, Tbits,
+ Terrs/Tbits, 0.5*erfc(sqrt(EsNo/2)), av_tx_pwr);
+ if ldpc_code
+ printf("\n LDPC: Terrs: %d BER: %4.2f Ferrs: %d FER: %4.2f",
+ Terrsldpc, Terrsldpc/Tbitsldpc, Ferrsldpc, Ferrsldpc/Ntrials);
+ end
+ printf("\n");
+ end
+ end
+
+ Ebvec = Esvec - 10*log10(bps);
+ sim_out.BERvec = BERvec;
+ sim_out.Ebvec = Ebvec;
+ sim_out.TERvec = TERvec;
+ sim_out.errors_log = errors_log;
+ sim_out.ldpc_errors_log = ldpc_errors_log;
+
+ if plot_scatter
+ figure(2);
+ clf;
+ scat = rx_symb_log .* exp(j*pi/4);
+ plot(real(scat), imag(scat),'+');
+ title('Scatter plot');
+ a = 1.5*max(real(scat)); b = 1.5*max(imag(scat));
+ axis([-a a -b b]);
+
+ if hf_sim
+ figure(3);
+ clf;
+
+ y = 1:(hf_n-1);
+ x = 1:Nc*Nd;
+ EsNodBSurface = 20*log10(abs(hf_model(y,:))) - 10*log10(variance);
+ EsNodBSurface(find(EsNodBSurface < -5)) = -5;
+ EsNodBSurface(find(EsNodBSurface > 25)) = 25;
+ mesh(x,y,EsNodBSurface);
+ grid
+ axis([1 Nc*Nd 1 Rs*5 -5 25])
+ title('HF Channel Es/No');
+
+ if verbose
+ [m n] = size(hf_model);
+ av_hf_pwr = sum(sum(abs(hf_model(:,:)).^2))/(m*n);
+ printf("average HF power: %3.2f over %d symbols\n", av_hf_pwr, m*n);
+ end
+
+ end
+
+ if strcmp(modulation,'qpsk')
+ % set up time axis to include gaps for pilots
+
+ [m1 n1] = size(phi_log);
+ phi_x = [];
+ phi_x_counter = 1;
+ p = Ns;
+ for r=1:m1
+ if p == Ns
+ phi_x_counter += Npilotsframe;
+ p = 0;
+ end
+ p++;
+ phi_x = [phi_x phi_x_counter++];
+ end
+
+ phi_x -= Nsymbrowpilot; % account for delay in pilot buffer
+
+ figure(5);
+ clf
+ subplot(211)
+ [m n] = size(phi_log);
+ plot(phi_x, phi_log(:,2),'r+;Estimated HF channel phase;')
+ if hf_sim
+ hold on;
+ [m n] = size(hf_model);
+ plot(angle(hf_model(1:m,2)),'g;HF channel phase;')
+ hold off;
+ end
+ ylabel('Phase (rads)');
+ legend('boxoff');
+ axis([1 m -1.1*pi 1.1*pi])
+
+ subplot(212)
+ plot(phi_x, amp_log(:,2),'r+;Estimated HF channel amp;')
+ if hf_sim
+ hold on;
+ plot(abs(hf_model(1:m,2)))
+ hold off;
+ end
+ ylabel('Amplitude');
+ xlabel('Time (symbols)');
+ legend('boxoff');
+ axis([1 m 0 3])
+ end
+
+ figure(4)
+ clf
+ stem(Nerrs_log)
+ axis([1 length(Nerrs_log) 0 max(Nerrs_log)+1])
+ end
+
+endfunction
+
+function sim_in = standard_init
+ sim_in.verbose = 1;
+ sim_in.do_write_pilot_file = 0;
+ sim_in.plot_scatter = 0;
+
+ sim_in.Esvec = 50;
+ sim_in.Ntrials = 30;
+ sim_in.framesize = 2;
+ sim_in.Rs = 50;
+
+ sim_in.phase_offset = 0;
+ sim_in.w_offset = 0;
+ sim_in.phase_noise_amp = 0;
+
+ sim_in.hf_delay_ms = 2;
+ sim_in.hf_sim = 0;
+ sim_in.hf_mag_only = 0;
+
+ sim_in.Nd = 1;
+endfunction
+
+