diff options
| author | Marin Ivanov <[email protected]> | 2025-07-25 10:17:14 +0300 |
|---|---|---|
| committer | Marin Ivanov <[email protected]> | 2026-01-18 20:09:26 +0200 |
| commit | 0168586485e6310c598713c911b1dec5618d61a1 (patch) | |
| tree | 6aabc2a12ef8fef70683f5389bea00f948015f77 /octave/tfsk.m | |
* codec2 cut-down version 1.2.0
* Remove codebook and generation of sources
* remove c2dec c2enc binaries
* prepare for emscripten
Diffstat (limited to 'octave/tfsk.m')
| -rw-r--r-- | octave/tfsk.m | 611 |
1 files changed, 611 insertions, 0 deletions
diff --git a/octave/tfsk.m b/octave/tfsk.m new file mode 100644 index 0000000..33f75a8 --- /dev/null +++ b/octave/tfsk.m @@ -0,0 +1,611 @@ +% tfsk.m +% Brady O'Brien 8 January 2016 +% David Rowe May 2020 +% +% Automatic testing of C port of FSK modem by comparing to reference +% Octave version. Currently just a subset of tests enabled in order to +% run in a reasonable amount of time as ctests, but still trapping any +% bit-rot. + +#{ + + FSK Modem automated test instructions: + + 1. Use cmake to build in debug mode to ensure unittest/tfsk is built: + + $ cd ~/codec2 + $ rm -Rf build_linux && mkdir build_linux + $ cd build_linux + $ cmake -DCMAKE_BUILD_TYPE=Debug .. + $ make + + 2 - Change tfsk_location below if required + 3 - Ensure Octave packages are installed + 4 - Start Octave and run tfsk.m. It will perform all tests automatically + +#} + +% tfsk executable path/file +if getenv("PATH_TO_TFSK") + global tfsk_location = getenv("PATH_TO_TFSK") + printf("setting tfsk_location from env var: %s\n", getenv("PATH_TO_TFSK")); +else + global tfsk_location = '../build_linux/unittest/tfsk'; +end + +% Set to 1 for verbose printouts +global print_verbose = 0; +global mod_pass_fail_maxdiff = 1e-3/5000; + +fsk_horus_as_a_lib=1; +fsk_horus; +pkg load signal; +% not needed unless parallel tests running +%pkg load parallel; +graphics_toolkit('gnuplot'); + +function print_result(test_name, result) + printf("%s", test_name); + for i=1:(40-length(test_name)) + printf("."); + end + printf(": %s\n", result); +end + +function mod = fsk_mod_c(Fs,Rs,f1,fsp,bits,M) + global tfsk_location; + %command to be run by system to launch the modulator + command = sprintf('%s M %d %d %d %d %d 0 fsk_mod_ut_bitvec fsk_mod_ut_modvec fsk_mod_ut_log.txt',tfsk_location,M,f1,fsp,Fs,Rs); + %save input bits into a file + bitvecfile = fopen('fsk_mod_ut_bitvec','wb+'); + fwrite(bitvecfile,bits,'uint8'); + fclose(bitvecfile); + + %run the modulator + system(command); + + modvecfile = fopen('fsk_mod_ut_modvec','rb'); + mod = fread(modvecfile,'single'); + fclose(modvecfile); + +endfunction + + +%Compare 2 vectors, fail if they are not close enough +function pass = vcompare(vc,voct,vname,tname,tol,pnum) + global print_verbose; + %Get delta of vectors + dvec = abs(abs(vc - voct)); + + %Normalize difference + dvec = dvec ./ abs(max(abs(voct))+1e-8); + + maxdvec = abs(max(dvec)); + pass = maxdvec<tol; + if print_verbose == 1 + printf(' Comparing vectors %s in test %s. Diff is %f\n',vname,tname,maxdvec); + end + if pass == 0 + printf('\n*** vcompare failed %s in test %s. Diff: %f Tol: %f\n\n',vname,tname,maxdvec,tol); + + titlestr = sprintf('Diff between C and Octave of %s for %s',vname,tname) + figure(10+pnum*2) + plot(abs(dvec)) + title(titlestr) + + figure(11+pnum*2) + plot((1:length(vc)),abs(vc),(1:length(voct)),abs(voct)) + + end + +endfunction + +% Run C, then Octave version of demod, and compare results +function test_stats = fsk_demod_xt(Fs,Rs,f1,fsp,mod,tname,M=2,lock_nin=0) + global print_verbose; + global tfsk_location; + %Name of executable containing the modulator + fsk_demod_ex_file = '../build/unittest/tfsk'; + modvecfilename = sprintf('fsk_demod_ut_modvec_%d',getpid()); + bitvecfilename = sprintf('fsk_demod_ut_bitvec_%d',getpid()); + tvecfilename = sprintf('fsk_demod_ut_tracevec_%d.txt',getpid()); + + %command to be run by system to launch the demod + command = sprintf('%s D %d %d %d %d %d %d %s %s %s',tfsk_location,M,f1,fsp,Fs,Rs,lock_nin,modvecfilename,bitvecfilename,tvecfilename); + + %save modulated input into a file + modvecfile = fopen(modvecfilename,'wb+'); + fwrite(modvecfile,mod,'single'); + fclose(modvecfile); + + %run the modulator + system(command); + + bitvecfile = fopen(bitvecfilename,'rb'); + bits = fread(bitvecfile,'uint8'); + fclose(bitvecfile); + bits = bits!=0; + + %Load test vec dump + load(tvecfilename) + + %Clean up files + delete(bitvecfilename); + delete(modvecfilename); + delete(tvecfilename); + + o_f1_dc = []; + o_f2_dc = []; + o_f3_dc = []; + o_f4_dc = []; + o_f1_int = []; + o_f2_int = []; + o_f3_int = []; + o_f4_int = []; + o_f1 = []; + o_f2 = []; + o_f3 = []; + o_f4 = []; + o_EbNodB = []; + o_ppm = []; + o_Sf = []; + o_fest = []; o_mask = []; o_fest2 = []; + o_rx_timing = []; + o_norm_rx_timing = []; + o_nin = []; + %Run octave demod, dump some test vectors + states = fsk_horus_init(Fs,Rs,M); + + Ts = states.Ts; + P = states.P; + states.ftx(1) = f1; + states.ftx(2) = f1+fsp; + states.ftx(3) = f1+fsp*2; + states.ftx(4) = f1+fsp*3; + states.tx_tone_separation = fsp; + states.dF = 0; + modin = mod; + obits = []; + while length(modin)>=states.nin + ninold = states.nin; + states = est_freq(states, modin(1:states.nin), states.M); + [bitbuf,states] = fsk_demod(states, modin(1:states.nin)); + if lock_nin states.nin = states.N; end + + modin=modin(ninold+1:length(modin)); + obits = [obits bitbuf]; + + %Save other parameters + o_f1_dc = [o_f1_dc states.f_dc(1,:)]; + o_f2_dc = [o_f2_dc states.f_dc(2,:)]; + o_f1_int = [o_f1_int states.f_int(1,:)]; + o_f2_int = [o_f2_int states.f_int(2,:)]; + o_EbNodB = [o_EbNodB states.EbNodB]; + o_ppm = [o_ppm states.ppm]; + o_rx_timing = [o_rx_timing states.rx_timing]; + o_norm_rx_timing = [o_norm_rx_timing states.norm_rx_timing]; + o_Sf = [o_Sf states.Sf']; + o_f1 = [o_f1 states.f(1)]; + o_f2 = [o_f1 states.f(2)]; + o_fest = [o_fest states.f]; + o_mask = [o_mask states.mask]; + o_fest2 = [o_fest2 states.f2]; + o_nin = [o_nin states.nin]; + if M==4 + o_f3_dc = [o_f3_dc states.f_dc(3,:)]; + o_f4_dc = [o_f4_dc states.f_dc(4,:)]; + o_f3_int = [o_f3_int states.f_int(3,:)]; + o_f4_int = [o_f4_int states.f_int(4,:)]; + o_f3 = [o_f1 states.f(3)]; + o_f4 = [o_f1 states.f(4)]; + end + end + + assert(vcompare(o_Sf, t_Sf,'fft est',tname,.001,1)); + assert(vcompare(o_fest, t_f_est,'f est',tname,.001,2)); + assert(vcompare(o_mask, t_mask,'f2 mask',tname,.001,3)); + assert(vcompare(o_fest2, t_f2_est,'f2 est',tname,.001,16)); + o_fest2(1:12) + t_f2_est(1:12) + assert(vcompare(o_f1_dc, t_f1_dc, 'f1 dc', tname,.01,8)); + assert(vcompare(o_f2_dc, t_f2_dc, 'f2 dc', tname,.01,9)); + assert(vcompare(o_f2_int, t_f2_int, 'f2 int', tname,.01,10)); + assert(vcompare(o_f1_int, t_f1_int, 'f1 int', tname,.01,11)); + if M==4 + assert(vcompare(o_f3_dc, t_f3_dc, 'f3 dc', tname,.01,4)) + assert(vcompare(o_f4_dc, t_f4_dc, 'f4 dc', tname,.01,5)); + assert(vcompare(o_f3_int, t_f3_int, 'f3 int', tname,.01,6)); + assert(vcompare(o_f4_int, t_f4_int, 'f4 int', tname,.01,7)); + end + + assert(vcompare(o_rx_timing, t_rx_timing,'rx timing',tname,.02,3)); + + % Much larger tolerances on unimportant statistics + assert(vcompare(o_ppm , t_ppm, 'ppm', tname,.02,12)); + assert(vcompare(o_EbNodB, t_EbNodB,'EbNodB', tname,.02,13)); + assert(vcompare(o_nin, t_nin, 'nin', tname,.0001,14)); + assert(vcompare(o_norm_rx_timing, t_norm_rx_timing,'norm rx timing',tname,.02,15)); + diffpass = sum(xor(obits,bits'))<4; + diffbits = sum(xor(obits,bits')); + + if diffpass==0 + printf('\n***bitcompare test failed test %s diff %d\n\n',tname,sum(xor(obits,bits'))) + figure(15) + plot(xor(obits,bits')) + title(sprintf('Bitcompare failure test %s',tname)) + end + + assert(diffpass); + + test_stats.pass = 1; + test_stats.diff = sum(xor(obits,bits')); + test_stats.cbits = bits'; + test_stats.obits = obits; +endfunction + + +function [dmod,cmod,omod,pass] = fsk_mod_test(Fs,Rs,f1,fsp,bits,tname,M=2) + global mod_pass_fail_maxdiff; + %Run the C modulator + cmod = fsk_mod_c(Fs,Rs,f1,fsp,bits,M); + %Set up and run the octave modulator + states.M = M; + states = fsk_horus_init(Fs,Rs,M); + + states.ftx(1) = f1; + states.ftx(2) = f1+fsp; + + if states.M == 4 + states.ftx(3) = f1+fsp*2; + states.ftx(4) = f1+fsp*3; + end + + states.dF = 0; + omod = fsk_mod(states,bits); + + dmod = cmod-omod; + pass = max(dmod)<(mod_pass_fail_maxdiff*length(dmod)); + if !pass + printf('Mod failed test %s!\n',tname); + end +endfunction + +% Random bit modulator test +% Pass random bits through the modulators and compare +function pass = test_mod_horuscfg_randbits + rand('state',1); + randn('state',1); + bits = rand(1,10000)>.5; + [dmod,cmod,omod,pass] = fsk_mod_test(8000,100,1200,1600,bits,"mod horuscfg randbits"); + + if(!pass) + figure(1) + plot(dmod) + title("Difference between octave and C mod impl"); + end + print_result("test_mod_horuscfg_randbits", "OK"); +endfunction + +% Random bit modulator test +% Pass random bits through the modulators and compare +function pass = test_mod_horuscfgm4_randbits + rand('state',1); + randn('state',1); + bits = rand(1,10000)>.5; + [dmod,cmod,omod,pass] = fsk_mod_test(8000,100,1200,1600,bits,"mod horuscfg randbits",4); + + if(!pass) + figure(1) + plot(dmod) + title("Difference between octave and C mod impl"); + end + print_result("test_mod_horuscfgm4_randbits", "OK"); + +endfunction + + +% A big ol' channel impairment tester shamelessly taken from fsk_horus +% This throws some channel imparment or another at the C and octave +% modem so they may be compared. +function stats = tfsk_run_sim(test_frame_mode,EbNodB,timing_offset,fading,df,M=2,frames=50,lock_nin=0) + #{ + timing_offset [0|1] enable a 1000ppm sample clock offset + fading [0|1] modulates tx power at 2Hz with 20dB fade depth, + e.g. to simulate balloon rotating at end of mission + df tx tone freq drift in Hz/s + lock_nin [0|1] locks nin to a constant which makes tests much simpler by breaking feedback loop + #} + global print_verbose; + + more off + rand('state',1); + randn('state',1); + + % ---------------------------------------------------------------------- + + % sm2000 config ------------------------ + %states = fsk_horus_init(96000, 1200); + %states.f1_tx = 4000; + %states.f2_tx = 5200; + + if test_frame_mode == 2 + % horus rtty config --------------------- + states = fsk_horus_init(8000, 100, M); + states.f1_tx = 1200; + states.f2_tx = 1600; + end + + if test_frame_mode == 4 + % horus rtty config --------------------- + states = fsk_horus_init(8000, 100, M); + states.f1_tx = 1200; + states.f2_tx = 1600; + states.tx_bits_file = "horus_tx_bits_rtty.txt"; % Octave file of bits we FSK modulate + + end + + if test_frame_mode == 5 + % horus binary config --------------------- + states = fsk_horus_init(8000, 100, M); + states.f1_tx = 1200; + states.f2_tx = 1600; + %%%states.tx_bits_file = "horus_tx_bits_binary.txt"; % Octave file of bits we FSK modulate + states.tx_bits_file = "horus_payload_rtty.txt"; + end + + % ---------------------------------------------------------------------- + + states.verbose = 0; + N = states.N; + P = states.P; + Rs = states.Rs; + nsym = states.nsym; + Fs = states.Fs; + states.df = df; + states.M = M; + + EbNo = 10^(EbNodB/10); + variance = states.Fs/(states.Rs*EbNo*states.bitspersymbol); + + % set up tx signal with payload bits based on test mode + + if test_frame_mode == 1 + % test frame of bits, which we repeat for convenience when BER testing + test_frame = round(rand(1, states.nsym)); + tx_bits = []; + for i=1:frames+1 + tx_bits = [tx_bits test_frame]; + end + end + if test_frame_mode == 2 + % random bits, just to make sure sync algs work on random data + tx_bits = round(rand(1, states.nbit*(frames+1))); + end + if test_frame_mode == 3 + % ...10101... sequence + tx_bits = zeros(1, states.nsym*(frames+1)); + tx_bits(1:2:length(tx_bits)) = 1; + end + + if (test_frame_mode == 4) || (test_frame_mode == 5) + + % load up a horus msg from disk and modulate that + + test_frame = load(states.tx_bits_file); + ltf = length(test_frame); + ntest_frames = ceil((frames+1)*nsym/ltf); + tx_bits = []; + for i=1:ntest_frames + tx_bits = [tx_bits test_frame]; + end + end + + f1 = states.f1_tx; + fsp = states.f2_tx-f1; + states.ftx(1) = f1; + states.ftx(2) = f1+fsp; + + if states.M == 4 + states.ftx(3) = f1+fsp*2; + states.ftx(4) = f1+fsp*3; + end + + tx = fsk_mod(states, tx_bits); + + if timing_offset + tx = resample(tx, 1000, 1001); % simulated 1000ppm sample clock offset + end + + if fading + ltx = length(tx); + tx = tx .* (1.1 + cos(2*pi*2*(0:ltx-1)/Fs))'; % min amplitude 0.1, -20dB fade, max 3dB + end + + noise = sqrt(variance)*randn(length(tx),1); + rx = tx + noise; + + test_name = sprintf("tfsk run sim EbNodB:%d frames:%d timing_offset:%d fading:%d df:%d",EbNodB,frames,timing_offset,fading,df); + tstats = fsk_demod_xt(Fs,Rs,states.f1_tx,fsp,rx,test_name,M,lock_nin); + + pass = tstats.pass; + obits = tstats.obits; + cbits = tstats.cbits; + + % Figure out BER of octave and C modems + bitcnt = length(tx_bits); + rx_bits = obits; + ber = 1; + ox = 1; + for offset = (1:100) + nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset))); + bern = nerr/(bitcnt-offset); + if(bern < ber) + ox = offset; + best_nerr = nerr; + end + ber = min([ber bern]); + end + offset = ox; + bero = ber; + ber = 1; + rx_bits = cbits; + ox = 1; + for offset = (1:100) + nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset))); + bern = nerr/(bitcnt-offset); + if(bern < ber) + ox = offset; + best_nerr = nerr; + end + ber = min([ber bern]); + end + offset = ox; + berc = ber; + stats.berc = berc; + stats.bero = bero; + stats.name = test_name; + % coherent BER theory calculation + + stats.thrcoh = .5*(M-1)*erfc(sqrt( (log2(M)/2) * EbNo )); + + % non-coherent BER theory calculation + % It was complicated, so I broke it up + + ms = M; + ns = (1:ms-1); + as = (-1).^(ns+1); + bs = (as./(ns+1)); + + cs = ((ms-1)./ns); + + ds = ns.*log2(ms); + es = ns+1; + fs = exp( -(ds./es)*EbNo ); + + thrncoh = ((ms/2)/(ms-1)) * sum(bs.*((ms-1)./ns).*exp( -(ds./es)*EbNo )); + + stats.thrncoh = thrncoh; + stats.pass = pass; +endfunction + +% run a bunch of tests at a range of EbNo's in parallel +function pass = ebno_battery_test(timing_offset,fading,df,M) + %Range of EbNodB over which to test + ebnodbrange = (5:2:13); + ebnodbs = length(ebnodbrange); + + mode = 2; + %Replication of other parameters for parcellfun + modev = repmat(mode,1,ebnodbs); + timingv = repmat(timing_offset,1,ebnodbs); + fadingv = repmat(fading,1,ebnodbs); + dfv = repmat(df,1,ebnodbs); + mv = repmat(M,1,ebnodbs); + + statv = pararrayfun(floor(1.25*nproc()),@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,mv); + passv = zeros(1,length(statv)); + for ii=(1:length(statv)) + passv(ii)=statv(ii).pass; + if statv(ii).pass + printf("Test %s passed\n",statv(ii).name); + else + printf("Test %s failed\n",statv(ii).name); + end + end + + %All pass flags are '1' + pass = sum(passv)>=length(passv); + %and no tests died + pass = pass && length(passv)==ebnodbs; + passv; + assert(pass) +endfunction + +%Test with and without sample clock offset +function pass = test_timing_var(df,M) + pass = ebno_battery_test(1,0,df,M) + assert(pass) + pass = pass && ebno_battery_test(0,0,df,M) + assert(pass) +endfunction + +%Test with and without 1 Hz/S freq drift +function pass = test_drift_var(M) + pass = test_timing_var(1,1,M) + pass = pass && test_timing_var(0,1,M) + assert(pass) +endfunction + +function pass = test_fsk_battery() + pass = test_mod_horuscfg_randbits; + pass = pass && test_mod_horuscfgm4_randbits; + pass = pass && test_drift_var(4); + assert(pass) + pass = pass && test_drift_var(2); + assert(pass) + if pass + printf("***** All tests passed! *****\n"); + end +endfunction + +function plot_fsk_bers(M=2) + %Range of EbNodB over which to plot + ebnodbrange = (4:13); + + berc = ones(1,length(ebnodbrange)); + bero = ones(1,length(ebnodbrange)); + berinc = ones(1,length(ebnodbrange)); + beric = ones(1,length(ebnodbrange)); + ebnodbs = length(ebnodbrange) + mode = 2; + %Replication of other parameters for parcellfun + modev = repmat(mode,1,ebnodbs); + timingv = repmat(1,1,ebnodbs); + fadingv = repmat(0,1,ebnodbs); + dfv = repmat(1,1,ebnodbs); + Mv = repmat(M,1,ebnodbs); + + statv = pararrayfun(floor(nproc()),@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,Mv); + %statv = arrayfun(@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,Mv); + + for ii = (1:length(statv)) + stat = statv(ii); + berc(ii)=stat.berc; + bero(ii)=stat.bero; + berinc(ii)=stat.thrncoh; + beric(ii) = stat.thrcoh; + end + clf; + figure(M) + + semilogy(ebnodbrange, berinc,sprintf('r;%dFSK non-coherent theory;',M)) + hold on; + semilogy(ebnodbrange, beric ,sprintf('g;%dFSK coherent theory;',M)) + semilogy(ebnodbrange, bero ,sprintf('b;Octave fsk horus %dFSK Demod;',M)) + semilogy(ebnodbrange, berc,sprintf('+;C fsk horus %dFSK Demod;',M)) + hold off; + grid("minor"); + axis([min(ebnodbrange) max(ebnodbrange) 1E-5 1]) + legend("boxoff"); + xlabel("Eb/No (dB)"); + ylabel("Bit Error Rate (BER)") + +endfunction + +% We kick off tests here ------------------------------------------------------ + +pass = 0; ntests = 0; +pass += test_mod_horuscfg_randbits; ntests++; +pass += test_mod_horuscfgm4_randbits; ntests++; +stats = tfsk_run_sim(test_frame_mode=2,EbNodB=5,timing_offset=0,fading=0,df=1,M=4,frames=10,lock_nin=1); ntests++; +if stats.pass + print_result("Demod 10 frames nin locked", "OK"); + pass += stats.pass; +end +stats = tfsk_run_sim(test_frame_mode=2,EbNodB=5,timing_offset=1,fading=0,df=1,M=4,frames=10,lock_nin=0); ntests++; +if stats.pass + print_result("Demod 10 frames", "OK"); + pass += stats.pass; +end +printf("tests: %d passed: %d ", ntests, pass); +if ntests == pass printf("PASS\n"); else printf("FAIL\n"); end |
