aboutsummaryrefslogtreecommitdiff
path: root/octave/tnewamp1.m
diff options
context:
space:
mode:
Diffstat (limited to 'octave/tnewamp1.m')
-rw-r--r--octave/tnewamp1.m256
1 files changed, 256 insertions, 0 deletions
diff --git a/octave/tnewamp1.m b/octave/tnewamp1.m
new file mode 100644
index 0000000..6454262
--- /dev/null
+++ b/octave/tnewamp1.m
@@ -0,0 +1,256 @@
+% tnewamp1.m
+%
+% Copyright David Rowe 2017
+% This program is distributed under the terms of the GNU General Public License
+% Version 2
+
+#{
+
+ Octave script to compare Octave and C versions of newamp1 processing, in order to test C port.
+
+ c2sim -> dump files -> $ ../build_linux/unittest/tnewamp1 -> octave:1> tnewamp1
+ Usage:
+
+ 1/ build codec2 with -DDUMP - see codec2-dev/README
+
+ 2/ Generate dump files using c2sim (just need to do this once)
+ $ cd codec2-dev/build_linux/src
+ $ ./c2sim ../../raw/hts1a.raw --phase0 --postfilter --dump hts1a --lpc 10 --dump_pitch_e hts1a_pitche.txt
+
+ 3/ Run C version which generates a file of Octave test vectors as output:
+
+ $ cd codec2-dev/build_linux/unittest
+ $ ./tnewamp1 ../../raw/hts1a.raw
+
+ 4/ Run Octave script to generate Octave test vectors and compare with C.
+
+ octave:1> tnewamp1("../build_linux/src/hts1a")
+
+ 5/ Optionally listen to output
+
+ ~/codec2-dev/build_linux/src$ ./c2sim ../../raw/hts1a.raw --phase0 --postfilter \
+ --amread hts1a_am.out --hmread hts1a_hm.out \
+ --Woread hts1a_Wo.out --hand_voicing hts1a_v.txt -o - \
+ | play -q -t raw -r 8000 -s -2 -
+#}
+
+function tnewamp1(input_prefix, path_to_unittest="../build_linux/unittest/")
+ printf("starting tnewamp1.c input_prefix: %s\n", input_prefix);
+
+ visible_flag = 'off';
+ newamp_700c;
+ autotest;
+ more off;
+
+ max_amp = 80;
+ postfilter = 0; % optional postfiler that runs on Am, not used atm
+ synth_phase = 1;
+
+ if nargin == 1
+ output_prefix = input_prefix;
+ end
+ model_name = strcat(input_prefix,"_model.txt");
+ model = load(model_name);
+ [frames nc] = size(model);
+
+ voicing_name = strcat(input_prefix,"_pitche.txt");
+ voicing = zeros(1,frames);
+
+ if exist(voicing_name, "file") == 2
+ pitche = load(voicing_name);
+ voicing = pitche(:, 3);
+ end
+
+ % Load in C vectors and compare -----------------------------------------
+
+ load(sprintf("%s/tnewamp1_out.txt", path_to_unittest));
+
+ K = 20;
+ [frames tmp] = size(rate_K_surface_c);
+ [rate_K_surface sample_freqs_kHz] = resample_const_rate_f_mel(model(1:frames,:), K);
+
+ melvq;
+ load train_120_1.txt; load train_120_2.txt;
+ train_120_vq(:,:,1)= train_120_1; train_120_vq(:,:,2)= train_120_2; m=5;
+ m=5;
+
+ eq = zeros(1,K);
+ for f=1:frames
+ mean_f(f) = mean(rate_K_surface(f,:));
+ rate_K_surface_no_mean(f,:) = rate_K_surface(f,:) - mean_f(f);
+ [rate_K_vec eq] = front_eq(rate_K_surface_no_mean(f,:), eq);
+ rate_K_surface_no_mean(f,:) = rate_K_vec;
+ end
+
+ [res rate_K_surface_no_mean_ ind] = mbest(train_120_vq, rate_K_surface_no_mean, m);
+
+ for f=1:frames
+ rate_K_surface_no_mean_(f,:) = post_filter(rate_K_surface_no_mean_(f,:), sample_freqs_kHz, 1.5);
+ end
+
+ rate_K_surface_ = zeros(frames, K);
+ interpolated_surface_ = zeros(frames, K);
+ energy_q = create_energy_q;
+ M = 4;
+ for f=1:frames
+ [mean_f_ indx] = quantise(energy_q, mean_f(f));
+ indexes(f,3) = indx - 1;
+ rate_K_surface_(f,:) = rate_K_surface_no_mean_(f,:) + mean_f_;
+ end
+
+ % simulated decoder
+ % break into segments of M frames. We have 2 samples spaced M apart
+ % and interpolate the rest.
+
+ Nfft_phase = 128; % note this needs to be 512 (FFT_ENC in codec2 if using --awread)
+ % with --hmread 128 is preferred as less memory/CPU
+ model_ = zeros(frames, max_amp+2);
+ voicing_ = zeros(1,frames);
+ Aw = zeros(frames, Nfft_phase);
+ H = zeros(frames, max_amp);
+ model_(1,1) = Wo_left = 2*pi/100;
+ voicing_left = 0;
+ left_vec = zeros(1,K);
+
+ % decoder runs on every M-th frame, 25Hz frame rate, offset at
+ % start is to minimise processing delay (thanks Jeroen!)
+
+ for f=M:M:frames
+
+ if voicing(f)
+ index = encode_log_Wo(model(f,1), 6);
+ if index == 0
+ index = 1;
+ end
+ model_(f,1) = decode_log_Wo(index, 6);
+ else
+ model_(f,1) = 2*pi/100;
+ end
+
+ Wo_right = model_(f,1);
+ voicing_right = voicing(f);
+ [Wo_ avoicing_] = interp_Wo_v(Wo_left, Wo_right, voicing_left, voicing_right);
+
+ #{
+ for i=1:4
+ fprintf(stderr, " Wo: %4.3f L: %d v: %d\n", Wo_(i), floor(pi/Wo_(i)), avoicing_(i));
+ end
+ fprintf(stderr," rate_K_vec: ");
+ for i=1:5
+ fprintf(stderr,"%5.3f ", rate_K_surface_(f,i));
+ end
+ fprintf(stderr,"\n");
+ #}
+
+ if f > M
+ model_(f-M:f-1,1) = Wo_;
+ voicing_(f-M:f-1) = avoicing_;
+ model_(f-M:f-1,2) = floor(pi ./ model_(f-M:f-1,1)); % calculate L for each interpolated Wo
+ end
+
+ right_vec = rate_K_surface_(f,:);
+
+ if f > M
+ sample_points = [f-M f];
+ resample_points = f-M:f-1;
+ for k=1:K
+ interpolated_surface_(resample_points,k) = interp_linear(sample_points, [left_vec(k) right_vec(k)], resample_points);
+ end
+
+ for k=f-M:f-1
+ model_(k,:) = resample_rate_L(model_(k,:), interpolated_surface_(k,:), sample_freqs_kHz);
+ Aw(k,:) = determine_phase(model_, k, Nfft_phase);
+ for m=1:model_(k,2)
+ b = round(m*model_(k,1)*Nfft_phase/(2*pi)); % map harmonic centre to DFT bin
+ H(k,m) = exp(j*Aw(k, b+1));
+ end
+ end
+
+ end
+
+ % update for next time
+
+ Wo_left = Wo_right;
+ voicing_left = voicing_right;
+ left_vec = right_vec;
+
+ end
+
+ f = figure(1); clf;
+ mesh(angle(H));
+ f = figure(2); clf;
+ mesh(angle(H_c(:,1:max_amp)));
+ f = figure(3); clf;
+ mesh(abs(H - H_c(:,1:max_amp)));
+
+ passes = 0; tests = 0;
+ passes += check(eq, eq_c, 'Equaliser', 0.01); tests++;
+ passes += check(rate_K_surface, rate_K_surface_c, 'rate_K_surface', 0.01); tests++;
+ passes += check(mean_f, mean_c, 'mean', 0.01); tests++;
+ passes += check(rate_K_surface_, rate_K_surface__c, 'rate_K_surface_', 0.01); tests++;
+ passes += check(interpolated_surface_, interpolated_surface__c, 'interpolated_surface_', 0.01); tests++;
+ passes += check(model_(:,1), model__c(:,1), 'interpolated Wo_', 0.001); tests++;
+ passes += check(voicing_, voicing__c, 'interpolated voicing'); tests++;
+ passes += check(model_(:,3:max_amp+2), model__c(:,3:max_amp+2), 'rate L Am surface ', 0.1); tests++;
+ passes += check(H, H_c(:,1:max_amp), 'phase surface'); tests++;
+ printf("passes: %d fails: %d\n", passes, tests - passes);
+
+ #{
+ % Save to disk to check synthesis is OK with c2sim
+
+ output_prefix = input_prefix;
+ Am_out_name = sprintf("%s_am.out", output_prefix);
+ fam = fopen(Am_out_name,"wb");
+
+ Wo_out_name = sprintf("%s_Wo.out", output_prefix);
+ fWo = fopen(Wo_out_name,"wb");
+
+ Aw_out_name = sprintf("%s_aw.out", output_prefix);
+ faw = fopen(Aw_out_name,"wb");
+
+ Hm_out_name = sprintf("%s_hm.out", output_prefix);
+ fhm = fopen(Hm_out_name,"wb");
+
+ printf("Generating files for c2sim: ");
+ for f=1:frames
+ printf(".", f);
+ Wo = model_(f,1);
+ L = min([model_(f,2) max_amp-1]);
+ Am = model_(f,3:(L+2));
+
+ Am_ = zeros(1,2*max_amp);
+ Am_(2:L) = Am(1:L-1);
+
+ fwrite(fam, Am_, "float32");
+ fwrite(fWo, Wo, "float32");
+
+ % Note we send opposite phase as c2sim expects phase of LPC
+ % analysis filter, just a convention based on historical
+ % development of Codec 2
+
+ Aw1 = zeros(1, Nfft_phase*2);
+ Aw1(1:2:Nfft_phase*2) = cos(Aw(f,:));
+ Aw1(2:2:Nfft_phase*2) = -sin(Aw(f,:));
+ fwrite(faw, Aw1, "float32");
+
+ Hm = zeros(1, 2*2*max_amp);
+ for m=1:L
+ Hm(2*m+1) = real(H(f,m));
+ Hm(2*m+2) = imag(H(f,m));
+ end
+ fwrite(fhm, Hm, "float32");
+ end
+
+ fclose(fam); fclose(fWo); fclose(faw); fclose(fhm);
+
+ v_out_name = sprintf("%s_v.txt", output_prefix);
+ fv = fopen(v_out_name,"wt");
+ for f=1:length(voicing__c)
+ fprintf(fv,"%d\n", voicing__c(f));
+ end
+ fclose(fv);
+ #}
+
+endfunction
+
+