1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
% fdmdv_demod.m
%
% Demodulator function for FDMDV modem (Octave version). Requires
% 8kHz sample rate raw files as input
%
% Copyright David Rowe 2012
% This program is distributed under the terms of the GNU General Public License
% Version 2
%
function fdmdv_demod(rawfilename, nbits, NumCarriers=14, errorpatternfilename, symbolfilename)
pkg load signal;
fdmdv; % include modem code
f = fdmdv_init(NumCarriers);
Nc = f.Nc; Nb = f.Nb; Rs = f.Rs; M = f.M; Fs = f.Fs; Nsync_mem = f.Nsync_mem;
test_bits = f.test_bits; Q = f.Q; P = f.P;
modulation = 'dqpsk';
fin = fopen(rawfilename, "rb");
gain = 1000;
frames = nbits/(Nc*Nb);
prev_rx_symbols = ones(Nc+1,1);
foff_phase_rect = 1;
% BER stats
total_bit_errors = 0;
total_bits = 0;
bit_errors_log = [];
sync_log = [];
test_frame_sync_log = [];
test_frame_sync_state = 0;
error_pattern_log = [];
% SNR states
sig_est = zeros(Nc+1,1);
noise_est = zeros(Nc+1,1);
% logs of various states for plotting
rx_symbols_log = [];
rx_timing_log = [];
foff_coarse_log = [];
foff_log = [];
rx_fdm_log = [];
snr_est_log = [];
% misc states
nin = M; % timing correction for sample rate differences
foff = 0;
fest_state = 0;
fest_timer = 0;
sync_mem = zeros(1,Nsync_mem);
sync = 0;
sync_log = [];
% spectrum states
Nspec=1024;
spec_mem=zeros(1,Nspec);
SdB = zeros(1,Nspec);
% optionally save output symbols
if nargin == 5
fm = fopen(symbolfilename,"wb");
dual_rx_symbols = zeros(1, 2*Nc);
dual_rx_bits = zeros(1,2*Nc*Nb);
end
atimer = 0;
% Main loop ----------------------------------------------------
for fr=1:frames
% obtain nin samples of the test input signal
for i=1:nin
rx_fdm(i) = fread(fin, 1, "short")/gain;
end
rx_fdm_log = [rx_fdm_log rx_fdm(1:nin)];
% update spectrum
l=length(rx_fdm);
spec_mem(1:Nspec-l) = spec_mem(l+1:Nspec);
spec_mem(Nspec-l+1:Nspec) = rx_fdm;
S=fft(spec_mem.*hanning(Nspec)',Nspec);
SdB = 0.9*SdB + 0.1*20*log10(abs(S));
% shift down to complex baseband
for i=1:nin
f.fbb_phase_rx = f.fbb_phase_rx*f.fbb_rect';
rx_fdm(i) = rx_fdm(i)*f.fbb_phase_rx;
end
mag = abs(f.fbb_phase_rx);
f.fbb_phase_rx /= mag;
% frequency offset estimation and correction
[pilot prev_pilot f.pilot_lut_index f.prev_pilot_lut_index] = get_pilot(f, f.pilot_lut_index, f.prev_pilot_lut_index, nin);
[foff_coarse S1 S2 f] = rx_est_freq_offset(f, rx_fdm, pilot, prev_pilot, nin, !sync );
if sync == 0
foff = foff_coarse;
end
foff_coarse_log = [foff_coarse_log foff_coarse];
foff_rect = exp(j*2*pi*foff/Fs);
for i=1:nin
foff_phase_rect *= foff_rect';
rx_fdm_fcorr(i) = rx_fdm(i)*foff_phase_rect;
end
% baseband processing
if 0
% easier to understand, but more memory and CPU hungry filtering and down conversion
[rx_baseband f] = fdm_downconvert(f, rx_fdm_fcorr, nin);
[rx_filt f] = rx_filter(f, rx_baseband, nin);
else
% more efficient filtering and down conversion
[rx_fdm_filter f] = rxdec_filter(f, rx_fdm_fcorr, nin);
[rx_filt f] = down_convert_and_rx_filter(f, rx_fdm_filter, nin, M/Q);
end
[rx_symbols rx_timing env f] = rx_est_timing(f, rx_filt, nin);
rx_timing_log = [rx_timing_log rx_timing];
nin = M;
if rx_timing > M/P
nin += M/P;
end
if rx_timing < -M/P;
nin -= M/P;
end
%printf("fr: %d rx_timing: %d nin = %d\n", fr, rx_timing, nin);
rx_symbols_log = [rx_symbols_log rx_symbols.*conj(prev_rx_symbols./abs(prev_rx_symbols))*exp(j*pi/4)];
[rx_bits sync_bit f_err pd] = psk_to_bits(f, prev_rx_symbols, rx_symbols, modulation);
% optionally save output symbols
if (nargin == 5)
% this free runs, and is reset by an "entered sync" state
if (sync_track == 0)
sync_track = 1;
else
sync_track = 0;
end
if (track == 1) && (sync_track == 1)
dual_rx_symbols(Nc+1:2*Nc) = rx_symbols(1:Nc).*conj(prev_rx_symbols(1:Nc)./abs(prev_rx_symbols(1:Nc)));
dual_rx_symbols_float32 = []; k = 1;
for i=1:2*Nc
dual_rx_symbols_float32(k++) = real(dual_rx_symbols(i));
dual_rx_symbols_float32(k++) = imag(dual_rx_symbols(i));
end
fwrite(fm, dual_rx_symbols_float32, "float32");
dual_rx_bits(Nc*Nb+1:2*Nc*Nb) = rx_bits;
%dump_bits(dual_rx_bits);
else
dual_rx_symbols(1:Nc) = rx_symbols(1:Nc).*conj(prev_rx_symbols(1:Nc)./abs(prev_rx_symbols(1:Nc)));
dual_rx_bits(1:Nc*Nb) = rx_bits;
end
end
% update some states
prev_rx_symbols = rx_symbols;
[sig_est noise_est] = snr_update(f, sig_est, noise_est, pd);
snr_est = calc_snr(f, sig_est, noise_est);
snr_est_log = [snr_est_log snr_est];
foff -= 0.5*f_err;
foff_log = [foff_log foff];
% freq est state machine
[sync reliable_sync_bit fest_state fest_timer sync_mem] = freq_state(f, sync_bit, fest_state, fest_timer, sync_mem);
sync_log = [sync_log sync];
% count bit errors if we find a test frame
[test_frame_sync bit_errors error_pattern f] = put_test_bits(f, rx_bits);
if (test_frame_sync == 1)
if (bit_errors)
printf("fr: %d bit_errors: %d\n", fr, bit_errors);
end
total_bit_errors = total_bit_errors + bit_errors;
total_bits = total_bits + f.Ntest_bits;
bit_errors_log = [bit_errors_log bit_errors/f.Ntest_bits];
else
bit_errors_log = [bit_errors_log 0];
end
% test frame sync state machine, just for more informative plots
next_test_frame_sync_state = test_frame_sync_state;
if (test_frame_sync_state == 0)
if (test_frame_sync == 1)
next_test_frame_sync_state = 1;
test_frame_count = 0;
end
end
if (test_frame_sync_state == 1)
% we only expect another test_frame_sync pulse every 4 symbols
test_frame_count++;
if (test_frame_count == 4)
test_frame_count = 0;
if ((test_frame_sync == 0))
next_test_frame_sync_state = 0;
else
error_pattern_log = [error_pattern_log error_pattern];
end
end
end
test_frame_sync_state = next_test_frame_sync_state;
test_frame_sync_log = [test_frame_sync_log test_frame_sync_state];
end
if nargin == 5
fclose(fm);
etfilename = strcat(strtok(symbolfilename,"."),"_et.bin");
fet = fopen(etfilename, "wb");
fwrite(fet, entered_track_log, "short");
fclose(fet);
end
% ---------------------------------------------------------------------
% Print Stats
% ---------------------------------------------------------------------
% Peak to Average Power Ratio calcs from http://www.dsplog.com
papr = max(rx_fdm_log.*conj(rx_fdm_log)) / mean(rx_fdm_log.*conj(rx_fdm_log));
papr_dB = 10*log10(papr);
ber = total_bit_errors / total_bits;
printf("%d bits %d errors BER: %1.4f PAPR(rx): %1.2f dB\n",total_bits, total_bit_errors, ber, papr_dB);
% ---------------------------------------------------------------------
% Plots
% ---------------------------------------------------------------------
xt = (1:frames)/Rs;
secs = frames/Rs;
figure(1); clf;
[n m] = size(rx_symbols_log);
plot(real(rx_symbols_log(1:Nc+1,15:m)),imag(rx_symbols_log(1:Nc+1,15:m)),'+')
axis([-2 2 -2 2]);
title('Scatter Diagram');
figure(2); clf;
plot(xt, rx_timing_log)
title('timing offset (samples)');
figure(3);
plot(xt, foff_log, '-;freq offset;')
%hold on;
%plot(xt, sync_log*75, 'r;course-fine;');
%hold off;
title('Freq offset (Hz)');
grid;
figure(4); clf;
plot_specgram(rx_fdm_log, Fs);
figure(5); clf;
subplot(311)
stem(xt, sync_log)
axis([0 secs 0 1.5]);
title('BPSK Sync')
subplot(312)
stem(xt, bit_errors_log);
title('Bit Errors for test frames')
subplot(313)
plot(xt, test_frame_sync_log);
axis([0 secs 0 1.5]);
title('Test Frame Sync')
figure(6); clf;
subplot(211);
plot(xt, snr_est_log);
title('SNR Estimates')
subplot(212)
snrdB_pc = 20*log10(sig_est(1:Nc+1)) - 20*log10(noise_est(1:Nc+1));
bar(snrdB_pc(1:Nc) - mean(snrdB_pc(1:Nc)))
axis([0 Nc+1 -3 3]);
figure(7); clf;
hold on;
lep = length(error_pattern_log);
if lep != 0
for p=1:Nc
plot(p + 0.25*error_pattern_log((p-1)*2+1:Nc*Nb:lep));
plot(0.30 + p + 0.25*error_pattern_log(p*2:Nc*Nb:lep),'r')
end
hold off;
axis([1 lep/(Nc*Nb) 0 Nc])
end
figure(8); clf;
subplot(211)
[a b] = size(rx_fdm_log);
xt1 = (1:b)/Fs;
plot(xt1, rx_fdm_log);
title('Rx FDM Signal');
subplot(212)
plot((0:Nspec/2-1)*Fs/Nspec, SdB(1:Nspec/2) - 20*log10(Nspec/2))
axis([0 Fs/2 -40 0])
grid
title('FDM Rx Spectrum');
if 0
% interleaving tests
load ../unittest/inter560.txt
lep = length(error_pattern_log);
lep = floor(lep/560)*560;
error_pattern_log_inter = zeros(1,lep);
for i=1:560:lep
for j=1:560
%printf("i: %4d j: %4d inter560(j): %4d\n", i,j,inter560(j));
index = inter560(j);
error_pattern_log_inter(i-1+index+1) = error_pattern_log(i-1+j);
end
end
figure(8)
clf;
hold on;
for p=1:Nc
plot(p + 0.25*error_pattern_log_inter((p-1)*2+1:Nc*Nb:lep));
plot(0.30 + p + 0.25*error_pattern_log_inter(p*2:Nc*Nb:lep),'r')
end
hold off;
axis([1 lep/(Nc*Nb) 0 Nc])
end
% optionally save error pattern file
if nargin == 4
fout = fopen(errorpatternfilename, "wb");
fwrite(fout, error_pattern_log, "short");
fclose(fout);
end
endfunction
|