aboutsummaryrefslogtreecommitdiff
path: root/src/quantise.c
diff options
context:
space:
mode:
authorAuthor Name <[email protected]>2023-07-07 12:20:59 +0930
committerDavid Rowe <[email protected]>2023-07-07 12:29:06 +0930
commitac7c48b4dee99d4c772f133d70d8d1b38262fcd2 (patch)
treea2d0ace57a9c0e2e5b611c4987f6fed1b38b81e7 /src/quantise.c
shallow zip-file copy from codec2 e9d726bf20
Diffstat (limited to 'src/quantise.c')
-rw-r--r--src/quantise.c1238
1 files changed, 1238 insertions, 0 deletions
diff --git a/src/quantise.c b/src/quantise.c
new file mode 100644
index 0000000..36af5f4
--- /dev/null
+++ b/src/quantise.c
@@ -0,0 +1,1238 @@
+/*---------------------------------------------------------------------------*\
+
+ FILE........: quantise.c
+ AUTHOR......: David Rowe
+ DATE CREATED: 31/5/92
+
+ Quantisation functions for the sinusoidal coder.
+
+\*---------------------------------------------------------------------------*/
+
+/*
+ All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License version 2.1, as
+ published by the Free Software Foundation. This program is
+ distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with this program; if not, see <http://www.gnu.org/licenses/>.
+
+*/
+
+#include <assert.h>
+#include <ctype.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#include "defines.h"
+#include "dump.h"
+#include "quantise.h"
+#include "lpc.h"
+#include "lsp.h"
+#include "codec2_fft.h"
+#include "phase.h"
+#include "mbest.h"
+
+#undef PROFILE
+#include "machdep.h"
+
+#define LSP_DELTA1 0.01 /* grid spacing for LSP root searches */
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION HEADERS
+
+\*---------------------------------------------------------------------------*/
+
+float speech_to_uq_lsps(float lsp[], float ak[], float Sn[], float w[],
+ int m_pitch, int order);
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTIONS
+
+\*---------------------------------------------------------------------------*/
+
+int lsp_bits(int i) {
+ return lsp_cb[i].log2m;
+}
+
+int lspd_bits(int i) {
+ return lsp_cbd[i].log2m;
+}
+
+int lsp_pred_vq_bits(int i) {
+ return lsp_cbjmv[i].log2m;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ quantise
+
+ Quantises vec by choosing the nearest vector in codebook cb, and
+ returns the vector index. The squared error of the quantised vector
+ is added to se.
+
+\*---------------------------------------------------------------------------*/
+
+long quantise(const float * cb, float vec[], float w[], int k, int m, float *se)
+/* float cb[][K]; current VQ codebook */
+/* float vec[]; vector to quantise */
+/* float w[]; weighting vector */
+/* int k; dimension of vectors */
+/* int m; size of codebook */
+/* float *se; accumulated squared error */
+{
+ float e; /* current error */
+ long besti; /* best index so far */
+ float beste; /* best error so far */
+ long j;
+ int i;
+ float diff;
+
+ besti = 0;
+ beste = 1E32;
+ for(j=0; j<m; j++) {
+ e = 0.0;
+ for(i=0; i<k; i++) {
+ diff = cb[j*k+i]-vec[i];
+ e += (diff*w[i] * diff*w[i]);
+ }
+ if (e < beste) {
+ beste = e;
+ besti = j;
+ }
+ }
+
+ *se += beste;
+
+ return(besti);
+}
+
+
+
+/*---------------------------------------------------------------------------*\
+
+ encode_lspds_scalar()
+
+ Scalar/VQ LSP difference-in-frequency quantiser.
+
+\*---------------------------------------------------------------------------*/
+
+void encode_lspds_scalar(
+ int indexes[],
+ float lsp[],
+ int order
+)
+{
+ int i,k,m;
+ float lsp_hz[order];
+ float lsp__hz[order];
+ float dlsp[order];
+ float dlsp_[order];
+ float wt[order];
+ const float *cb;
+ float se;
+
+ for(i=0; i<order; i++) {
+ wt[i] = 1.0;
+ }
+
+ /* convert from radians to Hz so we can use human readable
+ frequencies */
+
+ for(i=0; i<order; i++)
+ lsp_hz[i] = (4000.0/PI)*lsp[i];
+
+ wt[0] = 1.0;
+ for(i=0; i<order; i++) {
+
+ /* find difference from previous quantised lsp */
+
+ if (i)
+ dlsp[i] = lsp_hz[i] - lsp__hz[i-1];
+ else
+ dlsp[0] = lsp_hz[0];
+
+ k = lsp_cbd[i].k;
+ m = lsp_cbd[i].m;
+ cb = lsp_cbd[i].cb;
+ indexes[i] = quantise(cb, &dlsp[i], wt, k, m, &se);
+ dlsp_[i] = cb[indexes[i]*k];
+
+ if (i)
+ lsp__hz[i] = lsp__hz[i-1] + dlsp_[i];
+ else
+ lsp__hz[0] = dlsp_[0];
+ }
+
+}
+
+
+void decode_lspds_scalar(
+ float lsp_[],
+ int indexes[],
+ int order
+)
+{
+ int i,k;
+ float lsp__hz[order];
+ float dlsp_[order];
+ const float *cb;
+
+ for(i=0; i<order; i++) {
+
+ k = lsp_cbd[i].k;
+ cb = lsp_cbd[i].cb;
+ dlsp_[i] = cb[indexes[i]*k];
+
+ if (i)
+ lsp__hz[i] = lsp__hz[i-1] + dlsp_[i];
+ else
+ lsp__hz[0] = dlsp_[0];
+
+ lsp_[i] = (PI/4000.0)*lsp__hz[i];
+ }
+
+}
+
+#define MIN(a,b) ((a)<(b)?(a):(b))
+#define MAX_ENTRIES 16384
+
+void compute_weights(const float *x, float *w, int ndim)
+{
+ int i;
+ w[0] = MIN(x[0], x[1]-x[0]);
+ for (i=1;i<ndim-1;i++)
+ w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
+ w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], PI-x[ndim-1]);
+
+ for (i=0;i<ndim;i++)
+ w[i] = 1./(.01+w[i]);
+}
+
+int find_nearest(const float *codebook, int nb_entries, float *x, int ndim)
+{
+ int i, j;
+ float min_dist = 1e15;
+ int nearest = 0;
+
+ for (i=0;i<nb_entries;i++)
+ {
+ float dist=0;
+ for (j=0;j<ndim;j++)
+ dist += (x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
+ if (dist<min_dist)
+ {
+ min_dist = dist;
+ nearest = i;
+ }
+ }
+ return nearest;
+}
+
+int find_nearest_weighted(const float *codebook, int nb_entries, float *x, const float *w, int ndim)
+{
+ int i, j;
+ float min_dist = 1e15;
+ int nearest = 0;
+
+ for (i=0;i<nb_entries;i++)
+ {
+ float dist=0;
+ for (j=0;j<ndim;j++)
+ dist += w[j]*(x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
+ if (dist<min_dist)
+ {
+ min_dist = dist;
+ nearest = i;
+ }
+ }
+ return nearest;
+}
+
+void lspjmv_quantise(float *x, float *xq, int order)
+{
+ int i, n1, n2, n3;
+ float err[order], err2[order], err3[order];
+ float w[order], w2[order], w3[order];
+ const float *codebook1 = lsp_cbjmv[0].cb;
+ const float *codebook2 = lsp_cbjmv[1].cb;
+ const float *codebook3 = lsp_cbjmv[2].cb;
+
+ w[0] = MIN(x[0], x[1]-x[0]);
+ for (i=1;i<order-1;i++)
+ w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
+ w[order-1] = MIN(x[order-1]-x[order-2], PI-x[order-1]);
+
+ compute_weights(x, w, order);
+
+ n1 = find_nearest(codebook1, lsp_cbjmv[0].m, x, order);
+
+ for (i=0;i<order;i++)
+ {
+ xq[i] = codebook1[order*n1+i];
+ err[i] = x[i] - xq[i];
+ }
+ for (i=0;i<order/2;i++)
+ {
+ err2[i] = err[2*i];
+ err3[i] = err[2*i+1];
+ w2[i] = w[2*i];
+ w3[i] = w[2*i+1];
+ }
+ n2 = find_nearest_weighted(codebook2, lsp_cbjmv[1].m, err2, w2, order/2);
+ n3 = find_nearest_weighted(codebook3, lsp_cbjmv[2].m, err3, w3, order/2);
+
+ for (i=0;i<order/2;i++)
+ {
+ xq[2*i] += codebook2[order*n2/2+i];
+ xq[2*i+1] += codebook3[order*n3/2+i];
+ }
+}
+
+int check_lsp_order(float lsp[], int order)
+{
+ int i;
+ float tmp;
+ int swaps = 0;
+
+ for(i=1; i<order; i++)
+ if (lsp[i] < lsp[i-1]) {
+ //fprintf(stderr, "swap %d\n",i);
+ swaps++;
+ tmp = lsp[i-1];
+ lsp[i-1] = lsp[i]-0.1;
+ lsp[i] = tmp+0.1;
+ i = 1; /* start check again, as swap may have caused out of order */
+ }
+
+ return swaps;
+}
+
+void force_min_lsp_dist(float lsp[], int order)
+{
+ int i;
+
+ for(i=1; i<order; i++)
+ if ((lsp[i]-lsp[i-1]) < 0.01) {
+ lsp[i] += 0.01;
+ }
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ lpc_post_filter()
+
+ Applies a post filter to the LPC synthesis filter power spectrum
+ Pw, which suppresses the inter-formant energy.
+
+ The algorithm is from p267 (Section 8.6) of "Digital Speech",
+ edited by A.M. Kondoz, 1994 published by Wiley and Sons. Chapter 8
+ of this text is on the MBE vocoder, and this is a freq domain
+ adaptation of post filtering commonly used in CELP.
+
+ I used the Octave simulation lpcpf.m to get an understanding of the
+ algorithm.
+
+ Requires two more FFTs which is significantly more MIPs. However
+ it should be possible to implement this more efficiently in the
+ time domain. Just not sure how to handle relative time delays
+ between the synthesis stage and updating these coeffs. A smaller
+ FFT size might also be acceptable to save CPU.
+
+ TODO:
+ [ ] sync var names between Octave and C version
+ [ ] doc gain normalisation
+ [ ] I think the first FFT is not rqd as we do the same
+ thing in aks_to_M2().
+
+\*---------------------------------------------------------------------------*/
+
+void lpc_post_filter(codec2_fftr_cfg fftr_fwd_cfg, float Pw[], float ak[],
+ int order, int dump, float beta, float gamma, int bass_boost, float E)
+{
+ int i;
+ float x[FFT_ENC]; /* input to FFTs */
+ COMP Ww[FFT_ENC/2+1]; /* weighting spectrum */
+ float Rw[FFT_ENC/2+1]; /* R = WA */
+ float e_before, e_after, gain;
+ float Pfw;
+ float max_Rw, min_Rw;
+ float coeff;
+ PROFILE_VAR(tstart, tfft1, taw, tfft2, tww, tr);
+
+ PROFILE_SAMPLE(tstart);
+
+ /* Determine weighting filter spectrum W(exp(jw)) ---------------*/
+
+ for(i=0; i<FFT_ENC; i++) {
+ x[i] = 0.0;
+ }
+
+ x[0] = ak[0];
+ coeff = gamma;
+ for(i=1; i<=order; i++) {
+ x[i] = ak[i] * coeff;
+ coeff *= gamma;
+ }
+ codec2_fftr(fftr_fwd_cfg, x, Ww);
+
+ PROFILE_SAMPLE_AND_LOG(tfft2, taw, " fft2");
+
+ for(i=0; i<FFT_ENC/2; i++) {
+ Ww[i].real = Ww[i].real*Ww[i].real + Ww[i].imag*Ww[i].imag;
+ }
+
+ PROFILE_SAMPLE_AND_LOG(tww, tfft2, " Ww");
+
+ /* Determined combined filter R = WA ---------------------------*/
+
+ max_Rw = 0.0; min_Rw = 1E32;
+ for(i=0; i<FFT_ENC/2; i++) {
+ Rw[i] = sqrtf(Ww[i].real * Pw[i]);
+ if (Rw[i] > max_Rw)
+ max_Rw = Rw[i];
+ if (Rw[i] < min_Rw)
+ min_Rw = Rw[i];
+
+ }
+
+ PROFILE_SAMPLE_AND_LOG(tr, tww, " R");
+
+ #ifdef DUMP
+ if (dump)
+ dump_Rw(Rw);
+ #endif
+
+ /* create post filter mag spectrum and apply ------------------*/
+
+ /* measure energy before post filtering */
+
+ e_before = 1E-4;
+ for(i=0; i<FFT_ENC/2; i++)
+ e_before += Pw[i];
+
+ /* apply post filter and measure energy */
+
+ #ifdef DUMP
+ if (dump)
+ dump_Pwb(Pw);
+ #endif
+
+
+ e_after = 1E-4;
+ for(i=0; i<FFT_ENC/2; i++) {
+ Pfw = powf(Rw[i], beta);
+ Pw[i] *= Pfw * Pfw;
+ e_after += Pw[i];
+ }
+ gain = e_before/e_after;
+
+ /* apply gain factor to normalise energy, and LPC Energy */
+
+ gain *= E;
+ for(i=0; i<FFT_ENC/2; i++) {
+ Pw[i] *= gain;
+ }
+
+ if (bass_boost) {
+ /* add 3dB to first 1 kHz to account for LP effect of PF */
+
+ for(i=0; i<FFT_ENC/8; i++) {
+ Pw[i] *= 1.4*1.4;
+ }
+ }
+
+ PROFILE_SAMPLE_AND_LOG2(tr, " filt");
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ aks_to_M2()
+
+ Transforms the linear prediction coefficients to spectral amplitude
+ samples. This function determines A(m) from the average energy per
+ band using an FFT.
+
+\*---------------------------------------------------------------------------*/
+
+void aks_to_M2(
+ codec2_fftr_cfg fftr_fwd_cfg,
+ float ak[], /* LPC's */
+ int order,
+ MODEL *model, /* sinusoidal model parameters for this frame */
+ float E, /* energy term */
+ float *snr, /* signal to noise ratio for this frame in dB */
+ int dump, /* true to dump sample to dump file */
+ int sim_pf, /* true to simulate a post filter */
+ int pf, /* true to enable actual LPC post filter */
+ int bass_boost, /* enable LPC filter 0-1kHz 3dB boost */
+ float beta,
+ float gamma, /* LPC post filter parameters */
+ COMP Aw[] /* output power spectrum */
+)
+{
+ int i,m; /* loop variables */
+ int am,bm; /* limits of current band */
+ float r; /* no. rads/bin */
+ float Em; /* energy in band */
+ float Am; /* spectral amplitude sample */
+ float signal, noise;
+ PROFILE_VAR(tstart, tfft, tpw, tpf);
+
+ PROFILE_SAMPLE(tstart);
+
+ r = TWO_PI/(FFT_ENC);
+
+ /* Determine DFT of A(exp(jw)) --------------------------------------------*/
+ {
+ float a[FFT_ENC]; /* input to FFT for power spectrum */
+
+ for(i=0; i<FFT_ENC; i++) {
+ a[i] = 0.0;
+ }
+
+ for(i=0; i<=order; i++)
+ a[i] = ak[i];
+ codec2_fftr(fftr_fwd_cfg, a, Aw);
+ }
+ PROFILE_SAMPLE_AND_LOG(tfft, tstart, " fft");
+
+ /* Determine power spectrum P(w) = E/(A(exp(jw))^2 ------------------------*/
+
+ float Pw[FFT_ENC/2];
+
+#ifndef FDV_ARM_MATH
+ for(i=0; i<FFT_ENC/2; i++) {
+ Pw[i] = 1.0/(Aw[i].real*Aw[i].real + Aw[i].imag*Aw[i].imag + 1E-6);
+ }
+#else
+ // this difference may seem strange, but the gcc for STM32F4 generates almost 5 times
+ // faster code with the two loops: 1120 ms -> 242 ms
+ // so please leave it as is or improve further
+ // since this code is called 4 times it results in almost 4ms gain (21ms -> 17ms per audio frame decode @ 1300 )
+
+ for(i=0; i<FFT_ENC/2; i++)
+ {
+ Pw[i] = Aw[i].real * Aw[i].real + Aw[i].imag * Aw[i].imag + 1E-6;
+ }
+ for(i=0; i<FFT_ENC/2; i++) {
+ Pw[i] = 1.0/(Pw[i]);
+ }
+#endif
+
+ PROFILE_SAMPLE_AND_LOG(tpw, tfft, " Pw");
+
+ if (pf)
+ lpc_post_filter(fftr_fwd_cfg, Pw, ak, order, dump, beta, gamma, bass_boost, E);
+ else {
+ for(i=0; i<FFT_ENC/2; i++) {
+ Pw[i] *= E;
+ }
+ }
+
+ PROFILE_SAMPLE_AND_LOG(tpf, tpw, " LPC post filter");
+
+ #ifdef DUMP
+ if (dump)
+ dump_Pw(Pw);
+ #endif
+
+ /* Determine magnitudes from P(w) ----------------------------------------*/
+
+ /* when used just by decoder {A} might be all zeroes so init signal
+ and noise to prevent log(0) errors */
+
+ signal = 1E-30; noise = 1E-32;
+
+ for(m=1; m<=model->L; m++) {
+ am = (int)((m - 0.5)*model->Wo/r + 0.5);
+ bm = (int)((m + 0.5)*model->Wo/r + 0.5);
+
+ // FIXME: With arm_rfft_fast_f32 we have to use this
+ // otherwise sometimes a to high bm is calculated
+ // which causes trouble later in the calculation
+ // chain
+ // it seems for some reason model->Wo is calculated somewhat too high
+ if (bm>FFT_ENC/2)
+ {
+ bm = FFT_ENC/2;
+ }
+ Em = 0.0;
+
+ for(i=am; i<bm; i++)
+ Em += Pw[i];
+ Am = sqrtf(Em);
+
+ signal += model->A[m]*model->A[m];
+ noise += (model->A[m] - Am)*(model->A[m] - Am);
+
+ /* This code significantly improves perf of LPC model, in
+ particular when combined with phase0. The LPC spectrum tends
+ to track just under the peaks of the spectral envelope, and
+ just above nulls. This algorithm does the reverse to
+ compensate - raising the amplitudes of spectral peaks, while
+ attenuating the null. This enhances the formants, and
+ suppresses the energy between formants. */
+
+ if (sim_pf) {
+ if (Am > model->A[m])
+ Am *= 0.7;
+ if (Am < model->A[m])
+ Am *= 1.4;
+ }
+ model->A[m] = Am;
+ }
+ *snr = 10.0*log10f(signal/noise);
+
+ PROFILE_SAMPLE_AND_LOG2(tpf, " rec");
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: encode_Wo()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Encodes Wo using a WO_LEVELS quantiser.
+
+\*---------------------------------------------------------------------------*/
+
+int encode_Wo(C2CONST *c2const, float Wo, int bits)
+{
+ int index, Wo_levels = 1<<bits;
+ float Wo_min = c2const->Wo_min;
+ float Wo_max = c2const->Wo_max;
+ float norm;
+
+ norm = (Wo - Wo_min)/(Wo_max - Wo_min);
+ index = floorf(Wo_levels * norm + 0.5);
+ if (index < 0 ) index = 0;
+ if (index > (Wo_levels-1)) index = Wo_levels-1;
+
+ return index;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: decode_Wo()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Decodes Wo using a WO_LEVELS quantiser.
+
+\*---------------------------------------------------------------------------*/
+
+float decode_Wo(C2CONST *c2const, int index, int bits)
+{
+ float Wo_min = c2const->Wo_min;
+ float Wo_max = c2const->Wo_max;
+ float step;
+ float Wo;
+ int Wo_levels = 1<<bits;
+
+ step = (Wo_max - Wo_min)/Wo_levels;
+ Wo = Wo_min + step*(index);
+
+ return Wo;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: encode_log_Wo()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Encodes Wo in the log domain using a WO_LEVELS quantiser.
+
+\*---------------------------------------------------------------------------*/
+
+int encode_log_Wo(C2CONST *c2const, float Wo, int bits)
+{
+ int index, Wo_levels = 1<<bits;
+ float Wo_min = c2const->Wo_min;
+ float Wo_max = c2const->Wo_max;
+ float norm;
+
+ norm = (log10f(Wo) - log10f(Wo_min))/(log10f(Wo_max) - log10f(Wo_min));
+ index = floorf(Wo_levels * norm + 0.5);
+ if (index < 0 ) index = 0;
+ if (index > (Wo_levels-1)) index = Wo_levels-1;
+
+ return index;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: decode_log_Wo()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Decodes Wo using a WO_LEVELS quantiser in the log domain.
+
+\*---------------------------------------------------------------------------*/
+
+float decode_log_Wo(C2CONST *c2const, int index, int bits)
+{
+ float Wo_min = c2const->Wo_min;
+ float Wo_max = c2const->Wo_max;
+ float step;
+ float Wo;
+ int Wo_levels = 1<<bits;
+
+ step = (log10f(Wo_max) - log10f(Wo_min))/Wo_levels;
+ Wo = log10f(Wo_min) + step*(index);
+
+ return POW10F(Wo);
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: speech_to_uq_lsps()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Analyse a windowed frame of time domain speech to determine LPCs
+ which are the converted to LSPs for quantisation and transmission
+ over the channel.
+
+\*---------------------------------------------------------------------------*/
+
+float speech_to_uq_lsps(float lsp[],
+ float ak[],
+ float Sn[],
+ float w[],
+ int m_pitch,
+ int order
+)
+{
+ int i, roots;
+ float Wn[m_pitch];
+ float R[order+1];
+ float e, E;
+
+ e = 0.0;
+ for(i=0; i<m_pitch; i++) {
+ Wn[i] = Sn[i]*w[i];
+ e += Wn[i]*Wn[i];
+ }
+
+ /* trap 0 energy case as LPC analysis will fail */
+
+ if (e == 0.0) {
+ for(i=0; i<order; i++)
+ lsp[i] = (PI/order)*(float)i;
+ return 0.0;
+ }
+
+ autocorrelate(Wn, R, m_pitch, order);
+ levinson_durbin(R, ak, order);
+
+ E = 0.0;
+ for(i=0; i<=order; i++)
+ E += ak[i]*R[i];
+
+ /* 15 Hz BW expansion as I can't hear the difference and it may help
+ help occasional fails in the LSP root finding. Important to do this
+ after energy calculation to avoid -ve energy values.
+ */
+
+ for(i=0; i<=order; i++)
+ ak[i] *= powf(0.994,(float)i);
+
+ roots = lpc_to_lsp(ak, order, lsp, 5, LSP_DELTA1);
+ if (roots != order) {
+ /* if root finding fails use some benign LSP values instead */
+ for(i=0; i<order; i++)
+ lsp[i] = (PI/order)*(float)i;
+ }
+
+ return E;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: encode_lsps_scalar()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Scalar LSP quantiser. From a vector of unquantised (floating point)
+ LSPs finds the quantised LSP indexes.
+
+\*---------------------------------------------------------------------------*/
+
+void encode_lsps_scalar(int indexes[], float lsp[], int order)
+{
+ int i,k,m;
+ float wt[1];
+ float lsp_hz[order];
+ const float * cb;
+ float se;
+
+ /* convert from radians to Hz so we can use human readable
+ frequencies */
+
+ for(i=0; i<order; i++)
+ lsp_hz[i] = (4000.0/PI)*lsp[i];
+
+ /* scalar quantisers */
+
+ wt[0] = 1.0;
+ for(i=0; i<order; i++) {
+ k = lsp_cb[i].k;
+ m = lsp_cb[i].m;
+ cb = lsp_cb[i].cb;
+ indexes[i] = quantise(cb, &lsp_hz[i], wt, k, m, &se);
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: decode_lsps_scalar()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ From a vector of quantised LSP indexes, returns the quantised
+ (floating point) LSPs.
+
+\*---------------------------------------------------------------------------*/
+
+void decode_lsps_scalar(float lsp[], int indexes[], int order)
+{
+ int i,k;
+ float lsp_hz[order];
+ const float * cb;
+
+ for(i=0; i<order; i++) {
+ k = lsp_cb[i].k;
+ cb = lsp_cb[i].cb;
+ lsp_hz[i] = cb[indexes[i]*k];
+ }
+
+ /* convert back to radians */
+
+ for(i=0; i<order; i++)
+ lsp[i] = (PI/4000.0)*lsp_hz[i];
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: encode_lsps_vq()
+ AUTHOR......: David Rowe
+ DATE CREATED: 15 Feb 2012
+
+ Multi-stage VQ LSP quantiser developed by Jean-Marc Valin.
+
+\*---------------------------------------------------------------------------*/
+
+void encode_lsps_vq(int *indexes, float *x, float *xq, int order)
+{
+ int i, n1, n2, n3;
+ float err[order], err2[order], err3[order];
+ float w[order], w2[order], w3[order];
+ const float *codebook1 = lsp_cbjmv[0].cb;
+ const float *codebook2 = lsp_cbjmv[1].cb;
+ const float *codebook3 = lsp_cbjmv[2].cb;
+
+ w[0] = MIN(x[0], x[1]-x[0]);
+ for (i=1;i<order-1;i++)
+ w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
+ w[order-1] = MIN(x[order-1]-x[order-2], PI-x[order-1]);
+
+ compute_weights(x, w, order);
+
+ n1 = find_nearest(codebook1, lsp_cbjmv[0].m, x, order);
+
+ for (i=0;i<order;i++)
+ {
+ xq[i] = codebook1[order*n1+i];
+ err[i] = x[i] - xq[i];
+ }
+ for (i=0;i<order/2;i++)
+ {
+ err2[i] = err[2*i];
+ err3[i] = err[2*i+1];
+ w2[i] = w[2*i];
+ w3[i] = w[2*i+1];
+ }
+ n2 = find_nearest_weighted(codebook2, lsp_cbjmv[1].m, err2, w2, order/2);
+ n3 = find_nearest_weighted(codebook3, lsp_cbjmv[2].m, err3, w3, order/2);
+
+ indexes[0] = n1;
+ indexes[1] = n2;
+ indexes[2] = n3;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: decode_lsps_vq()
+ AUTHOR......: David Rowe
+ DATE CREATED: 15 Feb 2012
+
+\*---------------------------------------------------------------------------*/
+
+void decode_lsps_vq(int *indexes, float *xq, int order, int stages)
+{
+ int i, n1, n2, n3;
+ const float *codebook1 = lsp_cbjmv[0].cb;
+ const float *codebook2 = lsp_cbjmv[1].cb;
+ const float *codebook3 = lsp_cbjmv[2].cb;
+
+ n1 = indexes[0];
+ n2 = indexes[1];
+ n3 = indexes[2];
+
+ for (i=0;i<order;i++) {
+ xq[i] = codebook1[order*n1+i];
+ }
+
+ if (stages != 1) {
+ for (i=0;i<order/2;i++) {
+ xq[2*i] += codebook2[order*n2/2+i];
+ xq[2*i+1] += codebook3[order*n3/2+i];
+ }
+ }
+
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: bw_expand_lsps()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Applies Bandwidth Expansion (BW) to a vector of LSPs. Prevents any
+ two LSPs getting too close together after quantisation. We know
+ from experiment that LSP quantisation errors < 12.5Hz (25Hz step
+ size) are inaudible so we use that as the minimum LSP separation.
+
+\*---------------------------------------------------------------------------*/
+
+void bw_expand_lsps(float lsp[], int order, float min_sep_low, float min_sep_high)
+{
+ int i;
+
+ for(i=1; i<4; i++) {
+
+ if ((lsp[i] - lsp[i-1]) < min_sep_low*(PI/4000.0))
+ lsp[i] = lsp[i-1] + min_sep_low*(PI/4000.0);
+
+ }
+
+ /* As quantiser gaps increased, larger BW expansion was required
+ to prevent twinkly noises. This may need more experiment for
+ different quanstisers.
+ */
+
+ for(i=4; i<order; i++) {
+ if (lsp[i] - lsp[i-1] < min_sep_high*(PI/4000.0))
+ lsp[i] = lsp[i-1] + min_sep_high*(PI/4000.0);
+ }
+}
+
+void bw_expand_lsps2(float lsp[],
+ int order
+)
+{
+ int i;
+
+ for(i=1; i<4; i++) {
+
+ if ((lsp[i] - lsp[i-1]) < 100.0*(PI/4000.0))
+ lsp[i] = lsp[i-1] + 100.0*(PI/4000.0);
+
+ }
+
+ /* As quantiser gaps increased, larger BW expansion was required
+ to prevent twinkly noises. This may need more experiment for
+ different quanstisers.
+ */
+
+ for(i=4; i<order; i++) {
+ if (lsp[i] - lsp[i-1] < 200.0*(PI/4000.0))
+ lsp[i] = lsp[i-1] + 200.0*(PI/4000.0);
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: apply_lpc_correction()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Apply first harmonic LPC correction at decoder. This helps improve
+ low pitch males after LPC modelling, like hts1a and morig.
+
+\*---------------------------------------------------------------------------*/
+
+void apply_lpc_correction(MODEL *model)
+{
+ if (model->Wo < (PI*150.0/4000)) {
+ model->A[1] *= 0.032;
+ }
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: encode_energy()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Encodes LPC energy using an E_LEVELS quantiser.
+
+\*---------------------------------------------------------------------------*/
+
+int encode_energy(float e, int bits)
+{
+ int index, e_levels = 1<<bits;
+ float e_min = E_MIN_DB;
+ float e_max = E_MAX_DB;
+ float norm;
+
+ e = 10.0*log10f(e);
+ norm = (e - e_min)/(e_max - e_min);
+ index = floorf(e_levels * norm + 0.5);
+ if (index < 0 ) index = 0;
+ if (index > (e_levels-1)) index = e_levels-1;
+
+ return index;
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: decode_energy()
+ AUTHOR......: David Rowe
+ DATE CREATED: 22/8/2010
+
+ Decodes energy using a E_LEVELS quantiser.
+
+\*---------------------------------------------------------------------------*/
+
+float decode_energy(int index, int bits)
+{
+ float e_min = E_MIN_DB;
+ float e_max = E_MAX_DB;
+ float step;
+ float e;
+ int e_levels = 1<<bits;
+
+ step = (e_max - e_min)/e_levels;
+ e = e_min + step*(index);
+ e = POW10F(e/10.0);
+
+ return e;
+}
+
+
+static float ge_coeff[2] = {0.8, 0.9};
+
+void compute_weights2(const float *x, const float *xp, float *w)
+{
+ w[0] = 30;
+ w[1] = 1;
+ if (x[1]<0)
+ {
+ w[0] *= .6;
+ w[1] *= .3;
+ }
+ if (x[1]<-10)
+ {
+ w[0] *= .3;
+ w[1] *= .3;
+ }
+ /* Higher weight if pitch is stable */
+ if (fabsf(x[0]-xp[0])<.2)
+ {
+ w[0] *= 2;
+ w[1] *= 1.5;
+ } else if (fabsf(x[0]-xp[0])>.5) /* Lower if not stable */
+ {
+ w[0] *= .5;
+ }
+
+ /* Lower weight for low energy */
+ if (x[1] < xp[1]-10)
+ {
+ w[1] *= .5;
+ }
+ if (x[1] < xp[1]-20)
+ {
+ w[1] *= .5;
+ }
+
+ //w[0] = 30;
+ //w[1] = 1;
+
+ /* Square the weights because it's applied on the squared error */
+ w[0] *= w[0];
+ w[1] *= w[1];
+
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: quantise_WoE()
+ AUTHOR......: Jean-Marc Valin & David Rowe
+ DATE CREATED: 29 Feb 2012
+
+ Experimental joint Wo and LPC energy vector quantiser developed by
+ Jean-Marc Valin. Exploits correlations between the difference in
+ the log pitch and log energy from frame to frame. For example
+ both the pitch and energy tend to only change by small amounts
+ during voiced speech, however it is important that these changes be
+ coded carefully. During unvoiced speech they both change a lot but
+ the ear is less sensitive to errors so coarser quantisation is OK.
+
+ The ear is sensitive to log energy and loq pitch so we quantise in
+ these domains. That way the error measure used to quantise the
+ values is close to way the ear senses errors.
+
+ See http://jmspeex.livejournal.com/10446.html
+
+\*---------------------------------------------------------------------------*/
+
+void quantise_WoE(C2CONST *c2const, MODEL *model, float *e, float xq[])
+{
+ int i, n1;
+ float x[2];
+ float err[2];
+ float w[2];
+ const float *codebook1 = ge_cb[0].cb;
+ int nb_entries = ge_cb[0].m;
+ int ndim = ge_cb[0].k;
+ float Wo_min = c2const->Wo_min;
+ float Wo_max = c2const->Wo_max;
+ float Fs = c2const->Fs;
+
+ /* VQ is only trained for Fs = 8000 Hz */
+
+ assert(Fs == 8000);
+
+ x[0] = log10f((model->Wo/PI)*4000.0/50.0)/log10f(2);
+ x[1] = 10.0*log10f(1e-4 + *e);
+
+ compute_weights2(x, xq, w);
+ for (i=0;i<ndim;i++)
+ err[i] = x[i]-ge_coeff[i]*xq[i];
+ n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim);
+
+ for (i=0;i<ndim;i++)
+ {
+ xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i];
+ err[i] -= codebook1[ndim*n1+i];
+ }
+
+ /*
+ x = log2(4000*Wo/(PI*50));
+ 2^x = 4000*Wo/(PI*50)
+ Wo = (2^x)*(PI*50)/4000;
+ */
+
+ model->Wo = powf(2.0, xq[0])*(PI*50.0)/4000.0;
+
+ /* bit errors can make us go out of range leading to all sorts of
+ probs like seg faults */
+
+ if (model->Wo > Wo_max) model->Wo = Wo_max;
+ if (model->Wo < Wo_min) model->Wo = Wo_min;
+
+ model->L = PI/model->Wo; /* if we quantise Wo re-compute L */
+
+ *e = POW10F(xq[1]/10.0);
+}
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: encode_WoE()
+ AUTHOR......: Jean-Marc Valin & David Rowe
+ DATE CREATED: 11 May 2012
+
+ Joint Wo and LPC energy vector quantiser developed my Jean-Marc
+ Valin. Returns index, and updated states xq[].
+
+\*---------------------------------------------------------------------------*/
+
+int encode_WoE(MODEL *model, float e, float xq[])
+{
+ int i, n1;
+ float x[2];
+ float err[2];
+ float w[2];
+ const float *codebook1 = ge_cb[0].cb;
+ int nb_entries = ge_cb[0].m;
+ int ndim = ge_cb[0].k;
+
+ assert((1<<WO_E_BITS) == nb_entries);
+
+ if (e < 0.0) e = 0; /* occasional small negative energies due LPC round off I guess */
+
+ x[0] = log10f((model->Wo/PI)*4000.0/50.0)/log10f(2);
+ x[1] = 10.0*log10f(1e-4 + e);
+
+ compute_weights2(x, xq, w);
+ for (i=0;i<ndim;i++)
+ err[i] = x[i]-ge_coeff[i]*xq[i];
+ n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim);
+
+ for (i=0;i<ndim;i++)
+ {
+ xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i];
+ err[i] -= codebook1[ndim*n1+i];
+ }
+
+ //printf("enc: %f %f (%f)(%f) \n", xq[0], xq[1], e, 10.0*log10(1e-4 + e));
+ return n1;
+}
+
+
+/*---------------------------------------------------------------------------*\
+
+ FUNCTION....: decode_WoE()
+ AUTHOR......: Jean-Marc Valin & David Rowe
+ DATE CREATED: 11 May 2012
+
+ Joint Wo and LPC energy vector quantiser developed my Jean-Marc
+ Valin. Given index and states xq[], returns Wo & E, and updates
+ states xq[].
+
+\*---------------------------------------------------------------------------*/
+
+void decode_WoE(C2CONST *c2const, MODEL *model, float *e, float xq[], int n1)
+{
+ int i;
+ const float *codebook1 = ge_cb[0].cb;
+ int ndim = ge_cb[0].k;
+ float Wo_min = c2const->Wo_min;
+ float Wo_max = c2const->Wo_max;
+
+ for (i=0;i<ndim;i++)
+ {
+ xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i];
+ }
+
+ //printf("dec: %f %f\n", xq[0], xq[1]);
+ model->Wo = powf(2.0, xq[0])*(PI*50.0)/4000.0;
+
+ /* bit errors can make us go out of range leading to all sorts of
+ probs like seg faults */
+
+ if (model->Wo > Wo_max) model->Wo = Wo_max;
+ if (model->Wo < Wo_min) model->Wo = Wo_min;
+
+ model->L = PI/model->Wo; /* if we quantise Wo re-compute L */
+
+ *e = POW10F(xq[1]/10.0);
+}
+