diff options
Diffstat (limited to 'octave/tfmfsk.m')
| -rw-r--r-- | octave/tfmfsk.m | 497 |
1 files changed, 497 insertions, 0 deletions
diff --git a/octave/tfmfsk.m b/octave/tfmfsk.m new file mode 100644 index 0000000..519e494 --- /dev/null +++ b/octave/tfmfsk.m @@ -0,0 +1,497 @@ +% tfsk.m +% Author: Brady O'Brien 8 February 2016 + + + +% Copyright 2016 David Rowe +% +% All rights reserved. +% +% This program is free software; you can redistribute it and/or modify +% it under the terms of the GNU Lesser General Public License version 2.1, as +% published by the Free Software Foundation. This program is +% distributed in the hope that it will be useful, but WITHOUT ANY +% WARRANTY; without even the implied warranty of MERCHANTABILITY or +% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +% License for more details. +% +% You should have received a copy of the GNU Lesser General Public License +% along with this program; if not, see <http://www.gnu.org/licenses/>. + + +% Octave script to check c port of mancyfsk/fmfsk against the fmfsk.m +% +#{ + + FMFSK Modem automated test instructions: + + 1. Use cmake to build in debug mode to ensure unittest/tfsk is built: + + $ cd ~/codec2 + $ rm -Rf build_linux && mkdir build_linux + $ cd build_linux + $ cmake -DCMAKE_BUILD_TYPE=Debug .. + $ make + + 2 - Change tfsk_location below if required + 3 - Ensure Octave packages signal and parallel are installed + 4 - Start Octave and run tfsk.m. It will perform all tests automatically + +#} + +%tfsk executable path/file +global tfsk_location = '../build_linux/unittest/tfmfsk'; + +%Set to 1 for verbose printouts +global print_verbose = 0; + + + +fmfsk +pkg load signal; +pkg load parallel; +graphics_toolkit('gnuplot'); + + +global mod_pass_fail_maxdiff = 1e-3/5000; + +function mod = fmfsk_mod_c(Fs,Rs,bits) + global tfsk_location; + %command to be run by system to launch the modulator + command = sprintf('%s M %d %d fsk_mod_ut_bitvec fsk_mod_ut_modvec fmfsk_mod_ut_log.txt',tfsk_location,Fs,Rs); + %save input bits into a file + bitvecfile = fopen('fsk_mod_ut_bitvec','wb+'); + fwrite(bitvecfile,bits,'uint8'); + fclose(bitvecfile); + + %run the modulator + system(command); + + modvecfile = fopen('fsk_mod_ut_modvec','rb'); + mod = fread(modvecfile,'single'); + fclose(modvecfile); + +endfunction + + +%Compare 2 vectors, fail if they are not close enough +function pass = vcompare(vc,voct,vname,tname,tol,pnum) + global print_verbose; + + %Get delta of vectors + dvec = abs(abs(vc)-abs(voct)); + + %Normalize difference + dvec = dvec ./ abs(max(abs(voct))+1e-8); + + maxdvec = abs(max(dvec)); + pass = maxdvec<tol; + if print_verbose == 1 + printf(' Comparing vectors %s in test %s. Diff is %f\n',vname,tname,maxdvec); + end + + if pass == 0 + printf('\n*** vcompare failed %s in test %s. Diff: %f Tol: %f\n\n',vname,tname,maxdvec,tol); + + titlestr = sprintf('Diff between C and Octave of %s for %s',vname,tname) + figure(10+pnum*2) + plot(abs(dvec)) + title(titlestr) + + figure(11+pnum*2) + plot((1:length(vc)),abs(vc),(1:length(voct)),abs(voct)) + + end + +endfunction + +function test_stats = fmfsk_demod_xt(Fs,Rs,mod,tname,M=2) + global tfsk_location; + + %Name of executable containing the modulator + modvecfilename = sprintf('fmfsk_demod_ut_modvec_%d',getpid()); + bitvecfilename = sprintf('fmfsk_demod_ut_bitvec_%d',getpid()); + tvecfilename = sprintf('fmfsk_demod_ut_tracevec_%d.txt',getpid()); + + %command to be run by system to launch the demod + command = sprintf('%s D %d %d %s %s %s',tfsk_location,Fs,Rs,modvecfilename,bitvecfilename,tvecfilename); + + %save modulated input into a file + modvecfile = fopen(modvecfilename,'wb+'); + fwrite(modvecfile,mod,'single'); + fclose(modvecfile); + + %run the modulator + system(command); + + bitvecfile = fopen(bitvecfilename,'rb'); + bits = fread(bitvecfile,'uint8'); + fclose(bitvecfile); + bits = bits!=0; + + %Load test vec dump + load(tvecfilename); + + %Clean up files + delete(bitvecfilename); + delete(modvecfilename); + delete(tvecfilename); + + o_norm_rx_timing = []; + o_symsamp = []; + o_rx_filt = []; + + %Run octave demod, dump some test vectors + states = fmfsk_init(Fs,Rs); + Ts = states.Ts; + modin = mod; + obits = []; + while length(modin)>=states.nin + ninold = states.nin; + [bitbuf,states] = fmfsk_demod(states, modin(1:states.nin)); + modin=modin(ninold+1:length(modin)); + obits = [obits bitbuf]; + + o_norm_rx_timing = [o_norm_rx_timing states.norm_rx_timing]; + o_symsamp = [o_symsamp states.symsamp]; + o_rx_filt = [o_rx_filt states.rx_filt]; + + end + + close all + pass = 1; + + % One part-per-thousand allowed on important parameters + + pass = vcompare(t_rx_filt,o_rx_filt,'rx filt',tname,.001,8) && pass; + pass = vcompare(t_norm_rx_timing,o_norm_rx_timing,'norm rx timing',tname,.001,9) && pass; + pass = vcompare(t_symsamp,o_symsamp,'symsamp',tname,.001,10) && pass; + + assert(pass); + diffpass = sum(xor(obits,bits'))<4; + diffbits = sum(xor(obits,bits')); + + + if diffpass==0 + printf('\n***bitcompare test failed test %s diff %d\n\n',tname,sum(xor(obits,bits'))) + figure(15) + plot(xor(obits,bits')) + title(sprintf('Bitcompare failure test %s',tname)) + end + + pass = pass && diffpass; + + + test_stats.pass = pass; + test_stats.diff = sum(xor(obits,bits')); + test_stats.cbits = bits'; + test_stats.obits = obits; + +endfunction + +function [dmod,cmod,omod,pass] = fmfsk_mod_test(Fs,Rs,bits,tname,M=2) + global mod_pass_fail_maxdiff; + %Run the C modulator + cmod = fmfsk_mod_c(Fs,Rs,bits); + %Set up and run the octave modulator + states.M = M; + states = fmfsk_init(Fs,Rs); + + + omod = fmfsk_mod(states,bits)'; + + dmod = cmod-omod; + pass = max(dmod)<(mod_pass_fail_maxdiff*length(dmod)); + if !pass + printf('Mod failed test %s!\n',tname); + end +endfunction + +% Random bit modulator test +% Pass random bits through the modulators and compare +function pass = test_mod_fdvbcfg_randbits + rand('state',1); + randn('state',1); + bits = rand(1,19200)>.5; + [dmod,cmod,omod,pass] = fmfsk_mod_test(48000,2400,bits,"mod fdvbcfg randbits"); + + if(!pass) + figure(1) + plot(dmod) + title("Difference between octave and C mod impl"); + end + +endfunction + +% run_sim copypasted from fsk_horus.m +% simulation of tx and rx side, add noise, channel impairments ---------------------- + +function stats = tfmfsk_run_sim(EbNodB,timing_offset=0,de=0,of=0,hpf=0,df=0,M=2) + global print_verbose; + test_frame_mode = 2; + frames = 70; + %EbNodB = 3; + %timing_offset = 0.0; % see resample() for clock offset below + %fading = 0; % modulates tx power at 2Hz with 20dB fade depth, + % to simulate balloon rotating at end of mission + + more off + rand('state',1); + randn('state',1); + + Fs = 48000; + Rbit = 2400; + + % ---------------------------------------------------------------------- + + fm_states.pre_emp = 0; + fm_states.de_emp = de; + fm_states.Ts = Fs/(Rbit*2); + fm_states.Fs = Fs; + fm_states.fc = Fs/4; + fm_states.fm_max = 3E3; + fm_states.fd = 5E3; + fm_states.output_filter = of; + fm_states = analog_fm_init(fm_states); + + % ---------------------------------------------------------------------- + + states = fmfsk_init(Fs,Rbit); + + states.verbose = 0x1; + Rs = states.Rs; + nsym = states.nsym; + Fs = states.Fs; + nbit = states.nbit; + + EbNo = 10^(EbNodB/10); + variance = states.Fs/(states.Rb*EbNo); + + % set up tx signal with payload bits based on test mode + + if test_frame_mode == 1 + % test frame of bits, which we repeat for convenience when BER testing + test_frame = round(rand(1, states.nbit)); + tx_bits = []; + for i=1:frames+1 + tx_bits = [tx_bits test_frame]; + end + end + if test_frame_mode == 2 + % random bits, just to make sure sync algs work on random data + tx_bits = round(rand(1, states.nbit*(frames+1))); + end + if test_frame_mode == 3 + % repeating sequence of all symbols + % great for initial test of demod if nothing else works, + % look for this pattern in rx_bits + + % ...10101... + tx_bits = zeros(1, states.nbit*(frames+1)); + tx_bits(1:2:length(tx_bits)) = 1; + + end + + [b, a] = cheby1(4, 1, 300/Fs, 'high'); % 300Hz HPF to simulate FM radios + + tx_pmod = fmfsk_mod(states, tx_bits); + + tx = analog_fm_mod(fm_states, tx_pmod); + + if(timing_offset>0) + tx = resample(tx, 2000, 1999); % simulated 1000ppm sample clock offset + end + + %Add frequency drift + fdrift = df/Fs; + fshift = 2*pi*fdrift*(1:length(tx)); + fshift = exp(j*(fshift.^2)); + tx = tx.*fshift; + noise = sqrt(variance)*randn(length(tx),1); + rx = tx + noise'; + + %Demod by analog fm + rx = analog_fm_demod(fm_states, rx); + + %High-pass filter to simulate the FM radios + if hpf>0 + rx = filter(b,a,rx); + end + + timing_offset_samples = round(timing_offset*states.Ts); + st = 1 + timing_offset_samples; + rx_bits_buf = zeros(1,2*nbit); + + test_name = sprintf("tfmfsk run sim EbNodB:%d frames:%d timing_offset:%d df:%d",EbNodB,frames,timing_offset,df); + tstats = fmfsk_demod_xt(Fs,Rbit,rx',test_name,M); + + pass = tstats.pass; + obits = tstats.obits; + cbits = tstats.cbits; + + % Figure out BER of octave and C modems + bitcnt = length(tx_bits); + rx_bits = obits; + ber = 1; + ox = 1; + for offset = (1:400) + nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset))); + bern = nerr/(bitcnt-offset); + if(bern < ber) + ox = offset; + best_nerr = nerr; + end + ber = min([ber bern]); + end + offset = ox; + bero = ber; + ber = 1; + rx_bits = cbits; + ox = 1; + for offset = (1:400) + nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset))); + bern = nerr/(bitcnt-offset); + if(bern < ber) + ox = offset; + best_nerr = nerr; + end + ber = min([ber bern]); + end + offset = ox; + berc = ber; + + if print_verbose == 1 + printf("C BER %f in test %s\n",berc,test_name); + printf("Oct BER %f in test %s\n",bero,test_name); + end + + stats.berc = berc; + stats.bero = bero; + stats.name = test_name; + % non-coherent BER theory calculation + % It was complicated, so I broke it up + + ms = 2; + ns = (1:ms-1); + as = (-1).^(ns+1); + bs = (as./(ns+1)); + + cs = ((ms-1)./ns); + + ds = ns.*log2(ms); + es = ns+1; + fs = exp( -(ds./es)*EbNo ); + + thrncoh = ((ms/2)/(ms-1)) * sum(bs.*((ms-1)./ns).*exp( -(ds./es)*EbNo )); + + stats.thrncoh = thrncoh; + stats.pass = pass; + endfunction + + +function pass = ebno_battery_test(timing_offset,drift,hpf,deemp,outfilt) + global print_verbose; + %Range of EbNodB over which to test + ebnodbrange = (8:2:20); + ebnodbs = length(ebnodbrange); + + %Replication of other parameters for parcellfun + timingv = repmat(timing_offset ,1,ebnodbs); + driftv = repmat(drift ,1,ebnodbs); + hpfv = repmat(hpf ,1,ebnodbs); + deempv = repmat(deemp ,1,ebnodbs); + outfv = repmat(outfilt ,1,ebnodbs); + + statv = pararrayfun(floor(.75*nproc()),@tfmfsk_run_sim,ebnodbrange,timingv,deempv,outfv,hpfv,driftv); + %statv = arrayfun(@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,mv); + + passv = zeros(1,length(statv)); + for ii=(1:length(statv)) + passv(ii)=statv(ii).pass; + if statv(ii).pass + printf("Test %s passed\n",statv(ii).name); + else + printf("Test %s failed\n",statv(ii).name); + end + end + + %All pass flags are '1' + pass = sum(passv)>=length(passv); + %and no tests died + pass = pass && length(passv)==ebnodbs; + passv; + assert(pass) +endfunction + +%Test with and without sample clock offset +function pass = test_timing_var(drift,hpf,deemp,outfilt) + pass = ebno_battery_test(1,drift,hpf,deemp,outfilt) + assert(pass) + pass = ebno_battery_test(0,drift,hpf,deemp,outfilt) + assert(pass) +endfunction + +%Test with and without 1 Hz/S freq drift +function pass = test_drift_var(hpf,deemp,outfilt) + pass = test_timing_var(1,hpf,deemp,outfilt) + assert(pass) + pass = pass && test_timing_var(0,hpf,deemp,outfilt) + assert(pass) +endfunction + +function pass = test_fmfsk_battery() + pass = test_mod_fdvbcfg_randbits; + assert(pass) + pass = pass && test_drift_var(1,1,1); + assert(pass) + if pass + printf("***** All tests passed! *****\n"); + end +endfunction + +function plot_fmfsk_bers(M=2) + %Range of EbNodB over which to test + ebnodbrange = (8:14); + ebnodbs = length(ebnodbrange); + + %Replication of other parameters for parcellfun + %Turn on all of the impairments + timingv = repmat(1 ,1,ebnodbs); + driftv = repmat(1 ,1,ebnodbs); + hpfv = repmat(1 ,1,ebnodbs); + deempv = repmat(1 ,1,ebnodbs); + outfv = repmat(1 ,1,ebnodbs); + + statv = pararrayfun(nproc(),@tfmfsk_run_sim,ebnodbrange,timingv,deempv,outfv,hpfv,driftv); + %statv = arrayfun(@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,Mv); + + for ii = (1:length(statv)) + stat = statv(ii); + berc(ii)=stat.berc; + bero(ii)=stat.bero; + berinc(ii)=stat.thrncoh; + end + clf; + figure(M) + + semilogy(ebnodbrange, berinc,sprintf('r;2FSK non-coherent theory;',M)) + hold on; + semilogy(ebnodbrange, bero ,sprintf('g;Octave ME-FM-FSK Demod;',M)) + semilogy(ebnodbrange, berc,sprintf('v;C ME-FM-FSK Demod;',M)) + hold off; + grid("minor"); + axis([min(ebnodbrange) max(ebnodbrange) 1E-5 1]) + legend("boxoff"); + xlabel("Eb/No (dB)"); + ylabel("Bit Error Rate (BER)") + +endfunction + +xpass = test_fmfsk_battery +plot_fmfsk_bers(2) + +if xpass + printf("***** All tests passed! *****\n"); +else + printf("***** Some test failed! Look back through output to find failed test *****\n"); +end |
