1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
% tfsk.m
% Author: Brady O'Brien 8 February 2016
% Copyright 2016 David Rowe
%
% All rights reserved.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License version 2.1, as
% published by the Free Software Foundation. This program is
% distributed in the hope that it will be useful, but WITHOUT ANY
% WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
% License for more details.
%
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, see <http://www.gnu.org/licenses/>.
% Octave script to check c port of mancyfsk/fmfsk against the fmfsk.m
%
#{
FMFSK Modem automated test instructions:
1. Use cmake to build in debug mode to ensure unittest/tfsk is built:
$ cd ~/codec2
$ rm -Rf build_linux && mkdir build_linux
$ cd build_linux
$ cmake -DCMAKE_BUILD_TYPE=Debug ..
$ make
2 - Change tfsk_location below if required
3 - Ensure Octave packages signal and parallel are installed
4 - Start Octave and run tfsk.m. It will perform all tests automatically
#}
%tfsk executable path/file
global tfsk_location = '../build_linux/unittest/tfmfsk';
%Set to 1 for verbose printouts
global print_verbose = 0;
fmfsk
pkg load signal;
pkg load parallel;
graphics_toolkit('gnuplot');
global mod_pass_fail_maxdiff = 1e-3/5000;
function mod = fmfsk_mod_c(Fs,Rs,bits)
global tfsk_location;
%command to be run by system to launch the modulator
command = sprintf('%s M %d %d fsk_mod_ut_bitvec fsk_mod_ut_modvec fmfsk_mod_ut_log.txt',tfsk_location,Fs,Rs);
%save input bits into a file
bitvecfile = fopen('fsk_mod_ut_bitvec','wb+');
fwrite(bitvecfile,bits,'uint8');
fclose(bitvecfile);
%run the modulator
system(command);
modvecfile = fopen('fsk_mod_ut_modvec','rb');
mod = fread(modvecfile,'single');
fclose(modvecfile);
endfunction
%Compare 2 vectors, fail if they are not close enough
function pass = vcompare(vc,voct,vname,tname,tol,pnum)
global print_verbose;
%Get delta of vectors
dvec = abs(abs(vc)-abs(voct));
%Normalize difference
dvec = dvec ./ abs(max(abs(voct))+1e-8);
maxdvec = abs(max(dvec));
pass = maxdvec<tol;
if print_verbose == 1
printf(' Comparing vectors %s in test %s. Diff is %f\n',vname,tname,maxdvec);
end
if pass == 0
printf('\n*** vcompare failed %s in test %s. Diff: %f Tol: %f\n\n',vname,tname,maxdvec,tol);
titlestr = sprintf('Diff between C and Octave of %s for %s',vname,tname)
figure(10+pnum*2)
plot(abs(dvec))
title(titlestr)
figure(11+pnum*2)
plot((1:length(vc)),abs(vc),(1:length(voct)),abs(voct))
end
endfunction
function test_stats = fmfsk_demod_xt(Fs,Rs,mod,tname,M=2)
global tfsk_location;
%Name of executable containing the modulator
modvecfilename = sprintf('fmfsk_demod_ut_modvec_%d',getpid());
bitvecfilename = sprintf('fmfsk_demod_ut_bitvec_%d',getpid());
tvecfilename = sprintf('fmfsk_demod_ut_tracevec_%d.txt',getpid());
%command to be run by system to launch the demod
command = sprintf('%s D %d %d %s %s %s',tfsk_location,Fs,Rs,modvecfilename,bitvecfilename,tvecfilename);
%save modulated input into a file
modvecfile = fopen(modvecfilename,'wb+');
fwrite(modvecfile,mod,'single');
fclose(modvecfile);
%run the modulator
system(command);
bitvecfile = fopen(bitvecfilename,'rb');
bits = fread(bitvecfile,'uint8');
fclose(bitvecfile);
bits = bits!=0;
%Load test vec dump
load(tvecfilename);
%Clean up files
delete(bitvecfilename);
delete(modvecfilename);
delete(tvecfilename);
o_norm_rx_timing = [];
o_symsamp = [];
o_rx_filt = [];
%Run octave demod, dump some test vectors
states = fmfsk_init(Fs,Rs);
Ts = states.Ts;
modin = mod;
obits = [];
while length(modin)>=states.nin
ninold = states.nin;
[bitbuf,states] = fmfsk_demod(states, modin(1:states.nin));
modin=modin(ninold+1:length(modin));
obits = [obits bitbuf];
o_norm_rx_timing = [o_norm_rx_timing states.norm_rx_timing];
o_symsamp = [o_symsamp states.symsamp];
o_rx_filt = [o_rx_filt states.rx_filt];
end
close all
pass = 1;
% One part-per-thousand allowed on important parameters
pass = vcompare(t_rx_filt,o_rx_filt,'rx filt',tname,.001,8) && pass;
pass = vcompare(t_norm_rx_timing,o_norm_rx_timing,'norm rx timing',tname,.001,9) && pass;
pass = vcompare(t_symsamp,o_symsamp,'symsamp',tname,.001,10) && pass;
assert(pass);
diffpass = sum(xor(obits,bits'))<4;
diffbits = sum(xor(obits,bits'));
if diffpass==0
printf('\n***bitcompare test failed test %s diff %d\n\n',tname,sum(xor(obits,bits')))
figure(15)
plot(xor(obits,bits'))
title(sprintf('Bitcompare failure test %s',tname))
end
pass = pass && diffpass;
test_stats.pass = pass;
test_stats.diff = sum(xor(obits,bits'));
test_stats.cbits = bits';
test_stats.obits = obits;
endfunction
function [dmod,cmod,omod,pass] = fmfsk_mod_test(Fs,Rs,bits,tname,M=2)
global mod_pass_fail_maxdiff;
%Run the C modulator
cmod = fmfsk_mod_c(Fs,Rs,bits);
%Set up and run the octave modulator
states.M = M;
states = fmfsk_init(Fs,Rs);
omod = fmfsk_mod(states,bits)';
dmod = cmod-omod;
pass = max(dmod)<(mod_pass_fail_maxdiff*length(dmod));
if !pass
printf('Mod failed test %s!\n',tname);
end
endfunction
% Random bit modulator test
% Pass random bits through the modulators and compare
function pass = test_mod_fdvbcfg_randbits
rand('state',1);
randn('state',1);
bits = rand(1,19200)>.5;
[dmod,cmod,omod,pass] = fmfsk_mod_test(48000,2400,bits,"mod fdvbcfg randbits");
if(!pass)
figure(1)
plot(dmod)
title("Difference between octave and C mod impl");
end
endfunction
% run_sim copypasted from fsk_horus.m
% simulation of tx and rx side, add noise, channel impairments ----------------------
function stats = tfmfsk_run_sim(EbNodB,timing_offset=0,de=0,of=0,hpf=0,df=0,M=2)
global print_verbose;
test_frame_mode = 2;
frames = 70;
%EbNodB = 3;
%timing_offset = 0.0; % see resample() for clock offset below
%fading = 0; % modulates tx power at 2Hz with 20dB fade depth,
% to simulate balloon rotating at end of mission
more off
rand('state',1);
randn('state',1);
Fs = 48000;
Rbit = 2400;
% ----------------------------------------------------------------------
fm_states.pre_emp = 0;
fm_states.de_emp = de;
fm_states.Ts = Fs/(Rbit*2);
fm_states.Fs = Fs;
fm_states.fc = Fs/4;
fm_states.fm_max = 3E3;
fm_states.fd = 5E3;
fm_states.output_filter = of;
fm_states = analog_fm_init(fm_states);
% ----------------------------------------------------------------------
states = fmfsk_init(Fs,Rbit);
states.verbose = 0x1;
Rs = states.Rs;
nsym = states.nsym;
Fs = states.Fs;
nbit = states.nbit;
EbNo = 10^(EbNodB/10);
variance = states.Fs/(states.Rb*EbNo);
% set up tx signal with payload bits based on test mode
if test_frame_mode == 1
% test frame of bits, which we repeat for convenience when BER testing
test_frame = round(rand(1, states.nbit));
tx_bits = [];
for i=1:frames+1
tx_bits = [tx_bits test_frame];
end
end
if test_frame_mode == 2
% random bits, just to make sure sync algs work on random data
tx_bits = round(rand(1, states.nbit*(frames+1)));
end
if test_frame_mode == 3
% repeating sequence of all symbols
% great for initial test of demod if nothing else works,
% look for this pattern in rx_bits
% ...10101...
tx_bits = zeros(1, states.nbit*(frames+1));
tx_bits(1:2:length(tx_bits)) = 1;
end
[b, a] = cheby1(4, 1, 300/Fs, 'high'); % 300Hz HPF to simulate FM radios
tx_pmod = fmfsk_mod(states, tx_bits);
tx = analog_fm_mod(fm_states, tx_pmod);
if(timing_offset>0)
tx = resample(tx, 2000, 1999); % simulated 1000ppm sample clock offset
end
%Add frequency drift
fdrift = df/Fs;
fshift = 2*pi*fdrift*(1:length(tx));
fshift = exp(j*(fshift.^2));
tx = tx.*fshift;
noise = sqrt(variance)*randn(length(tx),1);
rx = tx + noise';
%Demod by analog fm
rx = analog_fm_demod(fm_states, rx);
%High-pass filter to simulate the FM radios
if hpf>0
rx = filter(b,a,rx);
end
timing_offset_samples = round(timing_offset*states.Ts);
st = 1 + timing_offset_samples;
rx_bits_buf = zeros(1,2*nbit);
test_name = sprintf("tfmfsk run sim EbNodB:%d frames:%d timing_offset:%d df:%d",EbNodB,frames,timing_offset,df);
tstats = fmfsk_demod_xt(Fs,Rbit,rx',test_name,M);
pass = tstats.pass;
obits = tstats.obits;
cbits = tstats.cbits;
% Figure out BER of octave and C modems
bitcnt = length(tx_bits);
rx_bits = obits;
ber = 1;
ox = 1;
for offset = (1:400)
nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset)));
bern = nerr/(bitcnt-offset);
if(bern < ber)
ox = offset;
best_nerr = nerr;
end
ber = min([ber bern]);
end
offset = ox;
bero = ber;
ber = 1;
rx_bits = cbits;
ox = 1;
for offset = (1:400)
nerr = sum(xor(rx_bits(offset:length(rx_bits)),tx_bits(1:length(rx_bits)+1-offset)));
bern = nerr/(bitcnt-offset);
if(bern < ber)
ox = offset;
best_nerr = nerr;
end
ber = min([ber bern]);
end
offset = ox;
berc = ber;
if print_verbose == 1
printf("C BER %f in test %s\n",berc,test_name);
printf("Oct BER %f in test %s\n",bero,test_name);
end
stats.berc = berc;
stats.bero = bero;
stats.name = test_name;
% non-coherent BER theory calculation
% It was complicated, so I broke it up
ms = 2;
ns = (1:ms-1);
as = (-1).^(ns+1);
bs = (as./(ns+1));
cs = ((ms-1)./ns);
ds = ns.*log2(ms);
es = ns+1;
fs = exp( -(ds./es)*EbNo );
thrncoh = ((ms/2)/(ms-1)) * sum(bs.*((ms-1)./ns).*exp( -(ds./es)*EbNo ));
stats.thrncoh = thrncoh;
stats.pass = pass;
endfunction
function pass = ebno_battery_test(timing_offset,drift,hpf,deemp,outfilt)
global print_verbose;
%Range of EbNodB over which to test
ebnodbrange = (8:2:20);
ebnodbs = length(ebnodbrange);
%Replication of other parameters for parcellfun
timingv = repmat(timing_offset ,1,ebnodbs);
driftv = repmat(drift ,1,ebnodbs);
hpfv = repmat(hpf ,1,ebnodbs);
deempv = repmat(deemp ,1,ebnodbs);
outfv = repmat(outfilt ,1,ebnodbs);
statv = pararrayfun(floor(.75*nproc()),@tfmfsk_run_sim,ebnodbrange,timingv,deempv,outfv,hpfv,driftv);
%statv = arrayfun(@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,mv);
passv = zeros(1,length(statv));
for ii=(1:length(statv))
passv(ii)=statv(ii).pass;
if statv(ii).pass
printf("Test %s passed\n",statv(ii).name);
else
printf("Test %s failed\n",statv(ii).name);
end
end
%All pass flags are '1'
pass = sum(passv)>=length(passv);
%and no tests died
pass = pass && length(passv)==ebnodbs;
passv;
assert(pass)
endfunction
%Test with and without sample clock offset
function pass = test_timing_var(drift,hpf,deemp,outfilt)
pass = ebno_battery_test(1,drift,hpf,deemp,outfilt)
assert(pass)
pass = ebno_battery_test(0,drift,hpf,deemp,outfilt)
assert(pass)
endfunction
%Test with and without 1 Hz/S freq drift
function pass = test_drift_var(hpf,deemp,outfilt)
pass = test_timing_var(1,hpf,deemp,outfilt)
assert(pass)
pass = pass && test_timing_var(0,hpf,deemp,outfilt)
assert(pass)
endfunction
function pass = test_fmfsk_battery()
pass = test_mod_fdvbcfg_randbits;
assert(pass)
pass = pass && test_drift_var(1,1,1);
assert(pass)
if pass
printf("***** All tests passed! *****\n");
end
endfunction
function plot_fmfsk_bers(M=2)
%Range of EbNodB over which to test
ebnodbrange = (8:14);
ebnodbs = length(ebnodbrange);
%Replication of other parameters for parcellfun
%Turn on all of the impairments
timingv = repmat(1 ,1,ebnodbs);
driftv = repmat(1 ,1,ebnodbs);
hpfv = repmat(1 ,1,ebnodbs);
deempv = repmat(1 ,1,ebnodbs);
outfv = repmat(1 ,1,ebnodbs);
statv = pararrayfun(nproc(),@tfmfsk_run_sim,ebnodbrange,timingv,deempv,outfv,hpfv,driftv);
%statv = arrayfun(@tfsk_run_sim,modev,ebnodbrange,timingv,fadingv,dfv,dav,Mv);
for ii = (1:length(statv))
stat = statv(ii);
berc(ii)=stat.berc;
bero(ii)=stat.bero;
berinc(ii)=stat.thrncoh;
end
clf;
figure(M)
semilogy(ebnodbrange, berinc,sprintf('r;2FSK non-coherent theory;',M))
hold on;
semilogy(ebnodbrange, bero ,sprintf('g;Octave ME-FM-FSK Demod;',M))
semilogy(ebnodbrange, berc,sprintf('v;C ME-FM-FSK Demod;',M))
hold off;
grid("minor");
axis([min(ebnodbrange) max(ebnodbrange) 1E-5 1])
legend("boxoff");
xlabel("Eb/No (dB)");
ylabel("Bit Error Rate (BER)")
endfunction
xpass = test_fmfsk_battery
plot_fmfsk_bers(2)
if xpass
printf("***** All tests passed! *****\n");
else
printf("***** Some test failed! Look back through output to find failed test *****\n");
end
|